BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 28287557)

  • 1. The Power of Simplicity: Sea Urchin Embryos as in Vivo Developmental Models for Studying Complex Cell-to-cell Signaling Network Interactions.
    Range RC; Martinez-Bartolomé M; Burr SD
    J Vis Exp; 2017 Feb; (120):. PubMed ID: 28287557
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Carbohydrate involvement in cellular interactions in sea urchin gastrulation.
    Khurrum M; Hernandez A; Eskalaei M; Badali O; Coyle-Thompson C; Oppenheimer SB
    Acta Histochem; 2004; 106(2):97-106. PubMed ID: 15147630
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sea urchin embryos exposed to thalidomide during early cleavage exhibit abnormal morphogenesis later in development.
    Reichard-Brown JL; Spinner H; McBride K
    Birth Defects Res B Dev Reprod Toxicol; 2009 Dec; 86(6):496-505. PubMed ID: 20025048
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Wnt signaling in the early sea urchin embryo.
    Kumburegama S; Wikramanayake AH
    Methods Mol Biol; 2008; 469():187-99. PubMed ID: 19109711
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Wnt-FoxQ2-nodal pathway links primary and secondary axis specification in sea urchin embryos.
    Yaguchi S; Yaguchi J; Angerer RC; Angerer LM
    Dev Cell; 2008 Jan; 14(1):97-107. PubMed ID: 18194656
    [TBL] [Abstract][Full Text] [Related]  

  • 6. TCF is the nuclear effector of the beta-catenin signal that patterns the sea urchin animal-vegetal axis.
    Vonica A; Weng W; Gumbiner BM; Venuti JM
    Dev Biol; 2000 Jan; 217(2):230-43. PubMed ID: 10625549
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A global view of gene expression in lithium and zinc treated sea urchin embryos: new components of gene regulatory networks.
    Poustka AJ; Kühn A; Groth D; Weise V; Yaguchi S; Burke RD; Herwig R; Lehrach H; Panopoulou G
    Genome Biol; 2007; 8(5):R85. PubMed ID: 17506889
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nodal/activin signaling establishes oral-aboral polarity in the early sea urchin embryo.
    Flowers VL; Courteau GR; Poustka AJ; Weng W; Venuti JM
    Dev Dyn; 2004 Dec; 231(4):727-40. PubMed ID: 15517584
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Gene regulatory networks and developmental plasticity in the early sea urchin embryo: alternative deployment of the skeletogenic gene regulatory network.
    Ettensohn CA; Kitazawa C; Cheers MS; Leonard JD; Sharma T
    Development; 2007 Sep; 134(17):3077-87. PubMed ID: 17670786
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The development of dorsoventral and bilateral axial properties in sea urchin embryos.
    Henry JJ
    Semin Cell Dev Biol; 1998 Feb; 9(1):43-52. PubMed ID: 9572113
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Signal-dependent regulation of the sea urchin skeletogenic gene regulatory network.
    Sun Z; Ettensohn CA
    Gene Expr Patterns; 2014 Nov; 16(2):93-103. PubMed ID: 25460514
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nuclear beta-catenin-dependent Wnt8 signaling in vegetal cells of the early sea urchin embryo regulates gastrulation and differentiation of endoderm and mesodermal cell lineages.
    Wikramanayake AH; Peterson R; Chen J; Huang L; Bince JM; McClay DR; Klein WH
    Genesis; 2004 Jul; 39(3):194-205. PubMed ID: 15282746
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A conserved gene regulatory network subcircuit drives different developmental fates in the vegetal pole of highly divergent echinoderm embryos.
    McCauley BS; Weideman EP; Hinman VF
    Dev Biol; 2010 Apr; 340(2):200-8. PubMed ID: 19941847
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The sea urchin kinome: a first look.
    Bradham CA; Foltz KR; Beane WS; Arnone MI; Rizzo F; Coffman JA; Mushegian A; Goel M; Morales J; Geneviere AM; Lapraz F; Robertson AJ; Kelkar H; Loza-Coll M; Townley IK; Raisch M; Roux MM; Lepage T; Gache C; McClay DR; Manning G
    Dev Biol; 2006 Dec; 300(1):180-93. PubMed ID: 17027740
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A computational model for BMP movement in sea urchin embryos.
    van Heijster P; Hardway H; Kaper TJ; Bradham CA
    J Theor Biol; 2014 Dec; 363():277-89. PubMed ID: 25167787
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Oral-aboral patterning and gastrulation of sea urchin embryos depend on sulfated glycosaminoglycans.
    Bergeron KF; Xu X; Brandhorst BP
    Mech Dev; 2011; 128(1-2):71-89. PubMed ID: 21056656
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Single cell RNA-seq in the sea urchin embryo show marked cell-type specificity in the Delta/Notch pathway.
    Foster S; Teo YV; Neretti N; Oulhen N; Wessel GM
    Mol Reprod Dev; 2019 Aug; 86(8):931-934. PubMed ID: 31199038
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cell adhesion and communication: a lesson from echinoderm embryos for the exploitation of new therapeutic tools.
    Zito F; Costa C; Sciarrino S; Cavalcante C; Poma V; Matranga V
    Prog Mol Subcell Biol; 2005; 39():7-44. PubMed ID: 17152692
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Regulative development of the sea urchin embryo: signalling cascades and morphogen gradients.
    Angerer LM; Angerer RC
    Semin Cell Dev Biol; 1999 Jun; 10(3):327-34. PubMed ID: 10441547
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Overview of the molecular defense systems used by sea urchin embryos to cope with UV radiation.
    Bonaventura R; Matranga V
    Mar Environ Res; 2017 Jul; 128():25-35. PubMed ID: 27252015
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.