BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

78 related articles for article (PubMed ID: 28287658)

  • 1. Variability in chlorophyll fluorescence spectra of eggplant fruit grown under different light environments: a case study.
    Ospina Calvo B; Parapugna TL; Lagorio MG
    Photochem Photobiol Sci; 2017 May; 16(5):711-720. PubMed ID: 28287658
    [TBL] [Abstract][Full Text] [Related]  

  • 2. On the relationship between the quantum yield of Photosystem II electron transport, as determined by chlorophyll fluorescence and the quantum yield of CO2-dependent O 2 evolution.
    Oquist G; Chow WS
    Photosynth Res; 1992 Jul; 33(1):51-62. PubMed ID: 24408447
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modelling chlorophyll fluorescence of kiwi fruit (Actinidia deliciosa).
    Novo JM; Iriel A; Lagorio MG
    Photochem Photobiol Sci; 2012 Apr; 11(4):724-30. PubMed ID: 22337099
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Photoinhibition in seedlings of Fraxinus and Fagus under natural light conditions: implications for forest regeneration?
    Einhorn KS; Rosenqvist E; Leverenz JW
    Oecologia; 2004 Jul; 140(2):241-51. PubMed ID: 15150656
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influence of ascorbate and the Mehler peroxidase reaction on non-photochemical quenching of chlorophyll fluorescence in maize mesophyll chloroplasts.
    Ivanov B; Edwards G
    Planta; 2000 Apr; 210(5):765-74. PubMed ID: 10805448
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chlorophyll fluorescence in the leaves of Tradescantia species of different ecological groups: induction events at different intensities of actinic light.
    Ptushenko VV; Ptushenko EA; Samoilova OP; Tikhonov AN
    Biosystems; 2013 Nov; 114(2):85-97. PubMed ID: 23948518
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Atrazine and Methyl Viologen Effects on Chlorophyll-a Fluorescence Revisited-Implications in Photosystems Emission and Ecotoxicity Assessment.
    Iriel A; Novo JM; Cordon GB; Lagorio MG
    Photochem Photobiol; 2014 Jan; 90(1):107-12. PubMed ID: 23869421
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Correlation between Strawberry (
    Choi HG; Moon BY; Kang NJ
    Front Plant Sci; 2016; 7():1607. PubMed ID: 27833628
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Effects of perchlorate on growth and chlorophyll fluorescence parameters of Alternanthera philoxeroides].
    Xie YF; Cai XL; Liu WL; Deng W
    Huan Jing Ke Xue; 2009 Aug; 30(8):2425-31. PubMed ID: 19799312
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of light environment on the induction of chlorophyll fluorescence in leaves: a comparative study of Tradescantia species of different ecotypes.
    Samoilova OP; Ptushenko VV; Kuvykin IV; Kiselev SA; Ptushenko OS; Tikhonov AN
    Biosystems; 2011 Jul; 105(1):41-8. PubMed ID: 21419191
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A model considering light reabsorption processes to correct in vivo chlorophyll fluorescence spectra in apples.
    Ramos ME; Lagorio MG
    Photochem Photobiol Sci; 2006 May; 5(5):508-12. PubMed ID: 16685329
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Responses of photosynthesis to NaCl in gametophytes of Acrostichum aureum.
    Li MP; Ong BL
    Physiol Plant; 1998 Jan; 102(1):119-127. PubMed ID: 35359129
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Photochemical changes and oxidative damage in the aquatic macrophyte Cymodocea nodosa exposed to paraquat-induced oxidative stress.
    Moustakas M; Malea P; Zafeirakoglou A; Sperdouli I
    Pestic Biochem Physiol; 2016 Jan; 126():28-34. PubMed ID: 26778431
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nonphotochemical quenching of excitation energy in photosystem II. A picosecond time-resolved study of the low yield of chlorophyll a fluorescence induced by single-turnover flash in isolated spinach thylakoids.
    Vasil'ev S; Bruce D
    Biochemistry; 1998 Aug; 37(31):11046-54. PubMed ID: 9693000
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Non-photochemical loss in PSII in high- and low-light-grown leaves of Vicia faba quantified by several fluorescence parameters including L(NP), F0/F'm, a novel parameter.
    Stefanov D; Terashima I
    Physiol Plant; 2008 Jun; 133(2):327-38. PubMed ID: 18346081
    [TBL] [Abstract][Full Text] [Related]  

  • 16. PsbS is required for systemic acquired acclimation and post-excess-light-stress optimization of chlorophyll fluorescence decay times in Arabidopsis.
    Ciszak K; Kulasek M; Barczak A; Grzelak J; Maćkowski S; Karpiński S
    Plant Signal Behav; 2015; 10(1):e982018. PubMed ID: 25654166
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Photosynthetic adaptation strategies in peppers under continuous lighting: insights into photosystem protection.
    Lanoue J; St Louis S; Little C; Hao X
    Front Plant Sci; 2024; 15():1372886. PubMed ID: 38882573
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chlorophyll fluorescence induction, chlorophyll content, and chromaticity characteristics of leaves as indicators of photosynthetic apparatus senescence in arboreous plants.
    Ptushenko VV; Ptushenko OS; Tikhonov AN
    Biochemistry (Mosc); 2014 Mar; 79(3):260-72. PubMed ID: 24821453
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Response of carbon assimilation and chlorophyll fluorescence to soybean leaf phosphorus across CO2: Alternative electron sink, nutrient efficiency and critical concentration.
    Singh SK; Reddy VR
    J Photochem Photobiol B; 2015 Oct; 151():276-84. PubMed ID: 26343044
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of light quality on CO2 assimilation, chlorophyll-fluorescence quenching, expression of Calvin cycle genes and carbohydrate accumulation in Cucumis sativus.
    Wang H; Gu M; Cui J; Shi K; Zhou Y; Yu J
    J Photochem Photobiol B; 2009 Jul; 96(1):30-7. PubMed ID: 19410482
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.