These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
639 related articles for article (PubMed ID: 28287699)
1. Efficient Polymer Solar Cells with High Open-Circuit Voltage Containing Diketopyrrolopyrrole-Based Non-Fullerene Acceptor Core End-Capped with Rhodanine Units. Privado M; Cuesta V; de la Cruz P; Keshtov ML; Singhal R; Sharmad GD; Langa F ACS Appl Mater Interfaces; 2017 Apr; 9(13):11739-11748. PubMed ID: 28287699 [TBL] [Abstract][Full Text] [Related]
2. Efficient Medium Bandgap Electron Acceptor Based on Diketopyrrolopyrrole and Furan for Efficient Ternary Organic Solar Cells. Yadagiri B; Narayanaswamy K; Sharma GD; Singh SP ACS Appl Mater Interfaces; 2022 Apr; 14(16):18751-18763. PubMed ID: 35412303 [TBL] [Abstract][Full Text] [Related]
3. A 9.16% Power Conversion Efficiency Organic Solar Cell with a Porphyrin Conjugated Polymer Using a Nonfullerene Acceptor. Tanguy L; Malhotra P; Singh SP; Brisard G; Sharma GD; Harvey PD ACS Appl Mater Interfaces; 2019 Aug; 11(31):28078-28087. PubMed ID: 31294545 [TBL] [Abstract][Full Text] [Related]
4. Non-fullerene organic solar cells based on diketopyrrolopyrrole polymers as electron donors and ITIC as an electron acceptor. Jiang X; Xu Y; Wang X; Wu Y; Feng G; Li C; Ma W; Li W Phys Chem Chem Phys; 2017 Mar; 19(11):8069-8075. PubMed ID: 28265617 [TBL] [Abstract][Full Text] [Related]
5. Push-Pull Type Non-Fullerene Acceptors for Polymer Solar Cells: Effect of the Donor Core. Kang Z; Chen SC; Ma Y; Wang J; Zheng Q ACS Appl Mater Interfaces; 2017 Jul; 9(29):24771-24777. PubMed ID: 28675932 [TBL] [Abstract][Full Text] [Related]
6. High-Performance All-Polymer Solar Cells Achieved by Fused Perylenediimide-Based Conjugated Polymer Acceptors. Yin Y; Yang J; Guo F; Zhou E; Zhao L; Zhang Y ACS Appl Mater Interfaces; 2018 May; 10(18):15962-15970. PubMed ID: 29660294 [TBL] [Abstract][Full Text] [Related]
7. Perfect Complementary in Absorption Spectra with Fullerene, Nonfullerene Acceptors and Medium Band Gap Donor for High-Performance Ternary Polymer Solar Cells. Liu H; Li J; Xia L; Bai Y; Hu S; Liu J; Liu L; Hayat T; Alsaedi A; Tan Z ACS Appl Mater Interfaces; 2018 Sep; 10(35):29831-29839. PubMed ID: 30102513 [TBL] [Abstract][Full Text] [Related]
8. D-A-D-π-D-A-D type diketopyrrolopyrrole based small molecule electron donors for bulk heterojunction organic solar cells. Patil Y; Misra R; Sharma A; Sharma GD Phys Chem Chem Phys; 2016 Jun; 18(25):16950-7. PubMed ID: 27292157 [TBL] [Abstract][Full Text] [Related]
9. Ferrocene-diketopyrrolopyrrole based small molecule donors for bulk heterojunction solar cells. Patil Y; Misra R; Singh MK; Sharma GD Phys Chem Chem Phys; 2017 Mar; 19(10):7262-7269. PubMed ID: 28239736 [TBL] [Abstract][Full Text] [Related]
10. Molecular design of photovoltaic materials for polymer solar cells: toward suitable electronic energy levels and broad absorption. Li Y Acc Chem Res; 2012 May; 45(5):723-33. PubMed ID: 22288572 [TBL] [Abstract][Full Text] [Related]
11. Wide Band Gap and Highly Conjugated Copolymers Incorporating 2-(Triisopropylsilylethynyl)thiophene-Substituted Benzodithiophene for Efficient Non-Fullerene Organic Solar Cells. Wang L; Liu H; Huai Z; Yang S ACS Appl Mater Interfaces; 2017 Aug; 9(34):28828-28837. PubMed ID: 28792202 [TBL] [Abstract][Full Text] [Related]
12. Molecular Engineering Strategy for High Efficiency Fullerene-Free Organic Solar Cells Using Conjugated 1,8-Naphthalimide and Fluorenone Building Blocks. Do TT; Pham HD; Manzhos S; Bell JM; Sonar P ACS Appl Mater Interfaces; 2017 May; 9(20):16967-16976. PubMed ID: 28467709 [TBL] [Abstract][Full Text] [Related]
13. Efficient Fullerene-Free Organic Solar Cells Using a Coumarin-Based Wide-Band-Gap Donor Material. Pradhan R; Malhotra P; Gupta G; Singhal R; Sharma GD; Mishra A ACS Appl Mater Interfaces; 2020 Sep; 12(37):41869-41876. PubMed ID: 32799443 [TBL] [Abstract][Full Text] [Related]
14. Nonhalogenated-Solvent-Processed Efficient Polymer Solar Cells Enabled by Medium-Band-Gap A-π-D-π-A Small-Molecule Acceptors Based on a 6,12-Dihydro-diindolo[1,2- Chen L; Zeng M; Weng C; Tan S; Shen P ACS Appl Mater Interfaces; 2019 Dec; 11(51):48134-48146. PubMed ID: 31823611 [TBL] [Abstract][Full Text] [Related]
15. A new non-fullerene acceptor based on the combination of a heptacyclic benzothiadiazole unit and a thiophene-fused end group achieving over 13% efficiency. Zhang Y; Cai F; Yuan J; Wei Q; Zhou L; Qiu B; Hu Y; Li Y; Peng H; Zou Y Phys Chem Chem Phys; 2019 Dec; 21(48):26557-26563. PubMed ID: 31782431 [TBL] [Abstract][Full Text] [Related]
16. Photoinduced charge transfer in donor-acceptor (DA) copolymer: fullerene bis-adduct polymer solar cells. Kang TE; Cho HH; Cho CH; Kim KH; Kang H; Lee M; Lee S; Kim B; Im C; Kim BJ ACS Appl Mater Interfaces; 2013 Feb; 5(3):861-8. PubMed ID: 23289501 [TBL] [Abstract][Full Text] [Related]
17. Side-Chain Effects on Energy-Level Modulation and Device Performance of Organic Semiconductor Acceptors in Organic Solar Cells. Luo Z; Zhao Y; Zhang ZG; Li G; Wu K; Xie D; Gao W; Li Y; Yang C ACS Appl Mater Interfaces; 2017 Oct; 9(39):34146-34152. PubMed ID: 28892350 [TBL] [Abstract][Full Text] [Related]
18. A new class of semiconducting polymers for bulk heterojunction solar cells with exceptionally high performance. Liang Y; Yu L Acc Chem Res; 2010 Sep; 43(9):1227-36. PubMed ID: 20853907 [TBL] [Abstract][Full Text] [Related]
19. Donor-acceptor-acceptor (D-A-A) type 1,8-naphthalimides as non-fullerene small molecule acceptors for bulk heterojunction solar cells. Gautam P; Sharma R; Misra R; Keshtov ML; Kuklin SA; Sharma GD Chem Sci; 2017 Mar; 8(3):2017-2024. PubMed ID: 28451319 [TBL] [Abstract][Full Text] [Related]
20. Fullerene/Non-fullerene Alloy for High-Performance All-Small-Molecule Organic Solar Cells. Privado M; Guijarro FG; de la Cruz P; Singhal R; Langa F; Sharma GD ACS Appl Mater Interfaces; 2021 Feb; 13(5):6461-6469. PubMed ID: 33524254 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]