These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

76 related articles for article (PubMed ID: 28287742)

  • 1. Self-Assembly of Silver Nanowire Ring Structures Driven by the Compressive Force of a Liquid Droplet.
    Seong B; Park HS; Chae I; Lee H; Wang X; Jang HS; Jung J; Lee C; Lin L; Byun D
    Langmuir; 2017 Apr; 33(14):3367-3372. PubMed ID: 28287742
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Surface-dependent scenarios for dissolution-driven motion of growing droplets.
    Curiotto S; Leroy F; Cheynis F; Müller P
    Sci Rep; 2017 Apr; 7(1):902. PubMed ID: 28424529
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Controlling nanowire growth through electric field-induced deformation of the catalyst droplet.
    Panciera F; Norton MM; Alam SB; Hofmann S; Mølhave K; Ross FM
    Nat Commun; 2016 Jul; 7():12271. PubMed ID: 27470536
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mimicking both petal and lotus effects on a single silicon substrate by tuning the wettability of nanostructured surfaces.
    Dawood MK; Zheng H; Liew TH; Leong KC; Foo YL; Rajagopalan R; Khan SA; Choi WK
    Langmuir; 2011 Apr; 27(7):4126-33. PubMed ID: 21355585
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Limits of III-V Nanowire Growth Based on Droplet Dynamics.
    Tornberg M; Maliakkal CB; Jacobsson D; Dick KA; Johansson J
    J Phys Chem Lett; 2020 Apr; 11(8):2949-2954. PubMed ID: 32208728
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The influence of the surface migration of gold on the growth of silicon nanowires.
    Hannon JB; Kodambaka S; Ross FM; Tromp RM
    Nature; 2006 Mar; 440(7080):69-71. PubMed ID: 16452928
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Self-assembly of colloidal nanoparticles inside charged droplets during spray-drying in the fabrication of nanostructured particles.
    Suhendi A; Nandiyanto AB; Munir MM; Ogi T; Gradon L; Okuyama K
    Langmuir; 2013 Oct; 29(43):13152-61. PubMed ID: 24138547
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Facile method for preparing superoleophobic surfaces with hierarchical microcubic/nanowire structures.
    Kwak W; Hwang W
    Nanotechnology; 2016 Feb; 27(5):055301. PubMed ID: 26670869
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Surface-controlled contact printing for nanowire device fabrication on a large scale.
    Roßkopf D; Strehle S
    Nanotechnology; 2016 May; 27(18):185301. PubMed ID: 27007944
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanism of self-assembled growth of ordered GaAs nanowire arrays by metalorganic vapor phase epitaxy on GaAs vicinal substrates.
    Mohan P; Bag R; Singh S; Kumar A; Tyagi R
    Nanotechnology; 2012 Jan; 23(2):025601. PubMed ID: 22166369
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rapid Macroscopic-Scale Assembly of Ag Nanowires at the Water/Air Interface.
    Yan Y; Kim SH; Zhang F; Piao L; Zhou H
    J Nanosci Nanotechnol; 2018 Mar; 18(3):1995-2000. PubMed ID: 29448698
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Constructing one-dimensional silver nanowire-doped reduced graphene oxide integrated with CdS nanowire network hybrid structures toward artificial photosynthesis.
    Liu S; Weng B; Tang ZR; Xu YJ
    Nanoscale; 2015 Jan; 7(3):861-6. PubMed ID: 25273001
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nano-soldering of magnetically aligned three-dimensional nanowire networks.
    Gao F; Gu Z
    Nanotechnology; 2010 Mar; 21(11):115604. PubMed ID: 20179331
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Surface tension driven aggregation of organic nanowires via lab in a droplet.
    Gu J; Yin B; Fu S; Feng M; Zhang Z; Dong H; Gao F; Zhao YS
    Nanoscale; 2018 Jun; 10(23):11006-11012. PubMed ID: 29868653
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tailoring the diameter and density of self-catalyzed GaAs nanowires on silicon.
    Matteini F; Dubrovskii VG; Rüffer D; Tütüncüoğlu G; Fontana Y; Morral AF
    Nanotechnology; 2015 Mar; 26(10):105603. PubMed ID: 25687793
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Noncontact Picolitor Droplet Handling by Photothermal Control of Interfacial Flow.
    Muto M; Yamamoto M; Motosuke M
    Anal Sci; 2016; 32(1):49-55. PubMed ID: 26753705
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Periodic emission of droplets from an oscillating electrified meniscus of a low-viscosity, highly conductive liquid.
    Hijano AJ; Loscertales IG; Ibáñez SE; Higuera FJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Jan; 91(1):013011. PubMed ID: 25679712
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Liquid droplet coalescence and fragmentation at the aqueous-air surface.
    Paneru G; Law BM; Ibi K; Ushijima B; Flanders BN; Aratono M; Matsubara H
    Langmuir; 2015 Jan; 31(1):132-9. PubMed ID: 25477297
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spontaneous self-welding of silver nanowire networks.
    Seong B; Chae I; Lee H; Nguyen VD; Byun D
    Phys Chem Chem Phys; 2015 Mar; 17(12):7629-33. PubMed ID: 25714503
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Lyotropic liquid crystalline self-assembly in dispersions of silver nanowires and nanoparticles.
    Murali S; Xu T; Marshall BD; Kayatin MJ; Pizarro K; Radhakrishnan VK; Nepal D; Davis VA
    Langmuir; 2010 Jul; 26(13):11176-83. PubMed ID: 20518494
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.