These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

226 related articles for article (PubMed ID: 28287978)

  • 41. Human-Robot Interaction: Does Robotic Guidance Force Affect Gait-Related Brain Dynamics during Robot-Assisted Treadmill Walking?
    Knaepen K; Mierau A; Swinnen E; Fernandez Tellez H; Michielsen M; Kerckhofs E; Lefeber D; Meeusen R
    PLoS One; 2015; 10(10):e0140626. PubMed ID: 26485148
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Tandem Stance Avoidance Using Adaptive and Asymmetric Admittance Control for Fall Prevention.
    Nakagawa S; Hasegawa Y; Fukuda T; Kondo I; Tanimoto M; Di P; Huang J; Huang Q
    IEEE Trans Neural Syst Rehabil Eng; 2016 May; 24(5):542-50. PubMed ID: 25955991
    [TBL] [Abstract][Full Text] [Related]  

  • 43. The Effects of a Lateral Wedge Insole on Knee and Ankle Joints During Slope Walking.
    Uto Y; Maeda T; Kiyama R; Kawada M; Tokunaga K; Ohwatashi A; Fukudome K; Ohshige T; Yoshimoto Y; Yone K
    J Appl Biomech; 2015 Dec; 31(6):476-83. PubMed ID: 26252560
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Effect of added inertia on the pelvis on gait.
    Meuleman J; Terpstra W; van Asseldonk EH; van der Kooij H
    IEEE Int Conf Rehabil Robot; 2011; 2011():5975493. PubMed ID: 22275690
    [TBL] [Abstract][Full Text] [Related]  

  • 45. A Novel Approach to Apply Gait Synchronized External Forces on the Pelvis using A-TPAD to Reduce Walking Effort.
    Vashista V; Khan M; Agrawal SK
    IEEE Robot Autom Lett; 2016 Jul; 1(2):1118-1124. PubMed ID: 29623294
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Direction-Dependent Adaptation of Dynamic Gait Stability Following Waist-Pull Perturbations.
    Martelli D; Vashista V; Micera S; Agrawal SK
    IEEE Trans Neural Syst Rehabil Eng; 2016 Dec; 24(12):1304-1313. PubMed ID: 26625418
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Timing-specific transfer of adapted muscle activity after walking in an elastic force field.
    Blanchette A; Bouyer LJ
    J Neurophysiol; 2009 Jul; 102(1):568-77. PubMed ID: 19420121
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Coordination of leg swing, thorax rotations, and pelvis rotations during gait: the organisation of total body angular momentum.
    Bruijn SM; Meijer OG; van Dieën JH; Kingma I; Lamoth CJ
    Gait Posture; 2008 Apr; 27(3):455-62. PubMed ID: 17669652
    [TBL] [Abstract][Full Text] [Related]  

  • 49. People adapt a consistent center-of-mass trajectory in a novel force field.
    Bucklin MA; Brown G; Gordon KE
    J Neurophysiol; 2023 Feb; 129(2):298-306. PubMed ID: 36542421
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Template model inspired leg force feedback based control can assist human walking.
    Zhao G; Sharbafi M; Vlutters M; van Asseldonk E; Seyfarth A
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():473-478. PubMed ID: 28813865
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Stability During Stairmill Ascent With Upward and Downward Applied Forces on the Pelvis.
    Chang BC; Agrawal SK
    IEEE Trans Neural Syst Rehabil Eng; 2021; 29():1504-1512. PubMed ID: 34310313
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Pelvis motion analysis for gait phase estimation toward leg-dependent body weight support at different walking speed.
    Watanabe T; Kobayashi Y; Fujie MG
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():1590-3. PubMed ID: 22254626
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Postural adaptation to walking on inclined surfaces: II. Strategies following spinal cord injury.
    Leroux A; Fung J; Barbeau H
    Clin Neurophysiol; 2006 Jun; 117(6):1273-82. PubMed ID: 16644275
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Simulating Hemiparetic Gait in Healthy Subjects Using TPAD With a Closed-Loop Controller.
    Kang J; Ghonasgi K; Walsh CJ; Agrawal SK
    IEEE Trans Neural Syst Rehabil Eng; 2019 May; 27(5):974-983. PubMed ID: 30932841
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Biomechanical and Physiological Evaluation of Multi-Joint Assistance With Soft Exosuits.
    Ding Y; Galiana I; Asbeck AT; De Rossi SM; Bae J; Santos TR; de Araujo VL; Lee S; Holt KG; Walsh C
    IEEE Trans Neural Syst Rehabil Eng; 2017 Feb; 25(2):119-130. PubMed ID: 26849868
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Gait training with virtual reality-based real-time feedback: improving gait performance following transfemoral amputation.
    Darter BJ; Wilken JM
    Phys Ther; 2011 Sep; 91(9):1385-94. PubMed ID: 21757579
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Design and control of the MINDWALKER exoskeleton.
    Wang S; Wang L; Meijneke C; van Asseldonk E; Hoellinger T; Cheron G; Ivanenko Y; La Scaleia V; Sylos-Labini F; Molinari M; Tamburella F; Pisotta I; Thorsteinsson F; Ilzkovitz M; Gancet J; Nevatia Y; Hauffe R; Zanow F; van der Kooij H
    IEEE Trans Neural Syst Rehabil Eng; 2015 Mar; 23(2):277-86. PubMed ID: 25373109
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Body weight support during robot-assisted walking: influence on the trunk and pelvis kinematics.
    Swinnen E; Baeyens JP; Hens G; Knaepen K; Beckwée D; Michielsen M; Clijsen R; Kerckhofs E
    NeuroRehabilitation; 2015; 36(1):81-91. PubMed ID: 25547772
    [TBL] [Abstract][Full Text] [Related]  

  • 59. A biarticular passive exosuit to support balance control can reduce metabolic cost of walking.
    Barazesh H; Ahmad Sharbafi M
    Bioinspir Biomim; 2020 Mar; 15(3):036009. PubMed ID: 31995519
    [TBL] [Abstract][Full Text] [Related]  

  • 60. WAKE-Up Exoskeleton to Assist Children With Cerebral Palsy: Design and Preliminary Evaluation in Level Walking.
    Patane F; Rossi S; Del Sette F; Taborri J; Cappa P
    IEEE Trans Neural Syst Rehabil Eng; 2017 Jul; 25(7):906-916. PubMed ID: 28092566
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.