These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

226 related articles for article (PubMed ID: 28287978)

  • 81. An intrinsically compliant robotic orthosis for treadmill training.
    Hussain S; Xie SQ; Jamwal PK; Parsons J
    Med Eng Phys; 2012 Dec; 34(10):1448-53. PubMed ID: 22421099
    [TBL] [Abstract][Full Text] [Related]  

  • 82. A haptic simulator to increase laparoscopic force application sensitivity.
    Long LO; Singapogu RB; Arcese G; Smith DE; Burg TC; Pagano CC; Burg KJ
    Stud Health Technol Inform; 2013; 184():273-5. PubMed ID: 23400169
    [TBL] [Abstract][Full Text] [Related]  

  • 83. Design of a gait training device for control of pelvic obliquity.
    Pietrusinski M; Severini G; Cajigas I; Mavroidis C; Bonato P
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():3620-3. PubMed ID: 23366711
    [TBL] [Abstract][Full Text] [Related]  

  • 84. Treadmill motor current based anteroposterior force estimation using ground reaction force approximation depending on gait cycle.
    Nakashima Y; Ando T; Kobayashi Y; Fujie MG
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():1583-9. PubMed ID: 22254625
    [TBL] [Abstract][Full Text] [Related]  

  • 85. A review in gait rehabilitation devices and applied control techniques.
    Chaparro-Cárdenas SL; Lozano-Guzmán AA; Ramirez-Bautista JA; Hernández-Zavala A
    Disabil Rehabil Assist Technol; 2018 Nov; 13(8):819-834. PubMed ID: 29577779
    [TBL] [Abstract][Full Text] [Related]  

  • 86. Characterizing the comfort limits of forces applied to the shoulders, thigh and shank to inform exosuit design.
    Yandell MB; Ziemnicki DM; McDonald KA; Zelik KE
    PLoS One; 2020; 15(2):e0228536. PubMed ID: 32049971
    [TBL] [Abstract][Full Text] [Related]  

  • 87. Instantaneous progression reference frame for calculating pelvis rotations: Reliable and anatomically-meaningful results independent of the direction of movement.
    Kainz H; Lloyd DG; Walsh HP; Carty CP
    Gait Posture; 2016 May; 46():30-4. PubMed ID: 27131173
    [TBL] [Abstract][Full Text] [Related]  

  • 88. Robot-assisted modifications of gait in healthy individuals.
    Kim SH; Banala SK; Brackbill EA; Agrawal SK; Krishnamoorthy V; Scholz JP
    Exp Brain Res; 2010 May; 202(4):809-24. PubMed ID: 20186402
    [TBL] [Abstract][Full Text] [Related]  

  • 89. Design of Human-Machine Interface and altering of pelvic obliquity with RGR Trainer.
    Pietrusinski M; Unluhisarcikli O; Mavroidis C; Cajigas I; Bonato P
    IEEE Int Conf Rehabil Robot; 2011; 2011():5975496. PubMed ID: 22275693
    [TBL] [Abstract][Full Text] [Related]  

  • 90. Kinesthetic Feedback During 2DOF Wrist Movements via a Novel MR-Compatible Robot.
    Erwin A; O'Malley MK; Ress D; Sergi F
    IEEE Trans Neural Syst Rehabil Eng; 2017 Sep; 25(9):1489-1499. PubMed ID: 28114022
    [TBL] [Abstract][Full Text] [Related]  

  • 91. Exoskeleton robot control for synchronous walking assistance in repetitive manual handling works based on dual unscented Kalman filter.
    Sado F; Yap HJ; Ghazilla RAR; Ahmad N
    PLoS One; 2018; 13(7):e0200193. PubMed ID: 30001415
    [TBL] [Abstract][Full Text] [Related]  

  • 92. Design and preliminary evaluation of a multi-robotic system with pelvic and hip assistance for pediatric gait rehabilitation.
    Park EJ; Kang J; Su H; Stegall P; Miranda DL; Hsu WH; Karabas M; Phipps N; Agrawal SK; Goldfield EC; Walsh CJ
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():332-339. PubMed ID: 28813841
    [TBL] [Abstract][Full Text] [Related]  

  • 93. Visual guidance can help with the use of a robotic exoskeleton during human walking.
    Kim M; Jeong H; Kantharaju P; Yoo D; Jacobson M; Shin D; Han C; Patton JL
    Sci Rep; 2022 Mar; 12(1):3881. PubMed ID: 35273244
    [TBL] [Abstract][Full Text] [Related]  

  • 94. An effective balancing response to lateral perturbations at pelvis level during slow walking requires control in all three planes of motion.
    Matjačić Z; Zadravec M; Olenšek A
    J Biomech; 2017 Jul; 60():79-90. PubMed ID: 28669548
    [TBL] [Abstract][Full Text] [Related]  

  • 95. Retraining of Human Gait - Are Lightweight Cable-Driven Leg Exoskeleton Designs Effective?
    Jin X; Prado A; Agrawal SK
    IEEE Trans Neural Syst Rehabil Eng; 2018 Apr; 26(4):847-855. PubMed ID: 29641389
    [TBL] [Abstract][Full Text] [Related]  

  • 96. A pelvic motion driven electrical stimulator for drop-foot treatment.
    Chen SW; Chen SC; Chen CF; Lai JS; Kuo TS
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():666-9. PubMed ID: 19964237
    [TBL] [Abstract][Full Text] [Related]  

  • 97. Functional electrical stimulation based on a pelvis support robot for gait rehabilitation of hemiplegic patients after stroke.
    Ye J; Nakashima Y; Zhang B; Kobayashi Y; Fujie MG
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():3098-101. PubMed ID: 25570646
    [TBL] [Abstract][Full Text] [Related]  

  • 98. Pelvic Breadth and Locomotor Kinematics in Human Evolution.
    Gruss LT; Gruss R; Schmitt D
    Anat Rec (Hoboken); 2017 Apr; 300(4):739-751. PubMed ID: 28297175
    [TBL] [Abstract][Full Text] [Related]  

  • 99. [A pelvic support weight rehabilitation system tracing the human center of mass height].
    He B; Shi P; Li X; Fan M; Deng Z; Yu H
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2022 Feb; 39(1):175-184. PubMed ID: 35231979
    [TBL] [Abstract][Full Text] [Related]  

  • 100. Movement augmentation to evaluate human control of locomotor stability.
    Brown G; Wu MM; Huang FC; Gordon KE
    Annu Int Conf IEEE Eng Med Biol Soc; 2017 Jul; 2017():66-69. PubMed ID: 29059812
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.