These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
7. Increasing accuracy of pulse transit time measurements by automated elimination of distorted photoplethysmography waves. van Velzen MHN; Loeve AJ; Niehof SP; Mik EG Med Biol Eng Comput; 2017 Nov; 55(11):1989-2000. PubMed ID: 28361357 [TBL] [Abstract][Full Text] [Related]
8. Modeling arterial pulse waves in healthy aging: a database for in silico evaluation of hemodynamics and pulse wave indexes. Charlton PH; Mariscal Harana J; Vennin S; Li Y; Chowienczyk P; Alastruey J Am J Physiol Heart Circ Physiol; 2019 Nov; 317(5):H1062-H1085. PubMed ID: 31442381 [TBL] [Abstract][Full Text] [Related]
9. Combining finger and toe photoplethysmograms for the detection of atherosclerosis. Peltokangas M; Vehkaoja A; Huotari M; Verho J; Mattila VM; Röning J; Romsi P; Lekkala J; Oksala N Physiol Meas; 2017 Feb; 38(2):139-154. PubMed ID: 28055981 [TBL] [Abstract][Full Text] [Related]
10. Gaussian modelling characteristics changes derived from finger photoplethysmographic pulses during exercise and recovery. Wang A; Yang L; Wen W; Zhang S; Gu G; Zheng D Microvasc Res; 2018 Mar; 116():20-25. PubMed ID: 28347756 [TBL] [Abstract][Full Text] [Related]
11. Digital Photoplethysmography for Assessment of Arterial Stiffness: Repeatability and Comparison with Applanation Tonometry. von Wowern E; Östling G; Nilsson PM; Olofsson P PLoS One; 2015; 10(8):e0135659. PubMed ID: 26291079 [TBL] [Abstract][Full Text] [Related]
12. Enhancing the pulse contour analysis-based arterial stiffness estimation using a novel photoplethysmographic parameter. Jang DG; Park SH; Hahn M IEEE J Biomed Health Inform; 2015 Jan; 19(1):256-62. PubMed ID: 25561448 [TBL] [Abstract][Full Text] [Related]
13. Developing an effective arterial stiffness monitoring system using the spring constant method and photoplethysmography. Wei CC IEEE Trans Biomed Eng; 2013 Jan; 60(1):151-4. PubMed ID: 22855219 [TBL] [Abstract][Full Text] [Related]
14. Noninvasive continuous arterial pressure measurements in the assessment of acute, severe central hypovolemia. Simon J; Farkas T; Gingl Z; Csillik A; Korsós A; Rudas L; Zöllei É Acta Physiol Hung; 2015 Mar; 102(1):43-50. PubMed ID: 25804388 [TBL] [Abstract][Full Text] [Related]
15. Comparison of photoplethysmographic and arterial tonometry-derived indices of arterial stiffness. Clarenbach CF; Stoewhas AC; van Gestel AJ; Latshang TD; Lo Cascio CM; Bloch KE; Kohler M Hypertens Res; 2012 Feb; 35(2):228-33. PubMed ID: 21993214 [TBL] [Abstract][Full Text] [Related]
16. Comparison of atherosclerotic indicators between cardio ankle vascular index and brachial ankle pulse wave velocity. Horinaka S; Yabe A; Yagi H; Ishimura K; Hara H; Iemua T; Matsuoka H Angiology; 2009; 60(4):468-76. PubMed ID: 19015165 [TBL] [Abstract][Full Text] [Related]
18. Pulse Transit Time Measurement Using Seismocardiogram, Photoplethysmogram, and Acoustic Recordings: Evaluation and Comparison. Yang C; Tavassolian N IEEE J Biomed Health Inform; 2018 May; 22(3):733-740. PubMed ID: 28436909 [TBL] [Abstract][Full Text] [Related]
19. Variations in arterial blood pressure and photoplethysmography during mechanical ventilation. Natalini G; Rosano A; Franceschetti ME; Facchetti P; Bernardini A Anesth Analg; 2006 Nov; 103(5):1182-8. PubMed ID: 17056952 [TBL] [Abstract][Full Text] [Related]
20. The differences in waveform between photoplethysmography pulse wave and radial pulse wave in movement station. Li K; Zhang S; Yang L; Luo Z; Gu G Biomed Mater Eng; 2014; 24(6):2657-64. PubMed ID: 25226969 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]