These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

308 related articles for article (PubMed ID: 28288112)

  • 1. Reconstructing the genome of the most recent common ancestor of flowering plants.
    Murat F; Armero A; Pont C; Klopp C; Salse J
    Nat Genet; 2017 Apr; 49(4):490-496. PubMed ID: 28288112
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ancestral polyploidy in seed plants and angiosperms.
    Jiao Y; Wickett NJ; Ayyampalayam S; Chanderbali AS; Landherr L; Ralph PE; Tomsho LP; Hu Y; Liang H; Soltis PS; Soltis DE; Clifton SW; Schlarbaum SE; Schuster SC; Ma H; Leebens-Mack J; dePamphilis CW
    Nature; 2011 May; 473(7345):97-100. PubMed ID: 21478875
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Amborella genome and the evolution of flowering plants.
    Amborella Genome Project
    Science; 2013 Dec; 342(6165):1241089. PubMed ID: 24357323
    [TBL] [Abstract][Full Text] [Related]  

  • 4. DEF- and GLO-like proteins may have lost most of their interaction partners during angiosperm evolution.
    Melzer R; Härter A; Rümpler F; Kim S; Soltis PS; Soltis DE; Theißen G
    Ann Bot; 2014 Nov; 114(7):1431-43. PubMed ID: 24902716
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Deciphering the evolutionary interplay between subgenomes following polyploidy: A paleogenomics approach in grasses.
    Salse J
    Am J Bot; 2016 Jul; 103(7):1167-74. PubMed ID: 27425631
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The flowering world: a tale of duplications.
    Van de Peer Y; Fawcett JA; Proost S; Sterck L; Vandepoele K
    Trends Plant Sci; 2009 Dec; 14(12):680-8. PubMed ID: 19818673
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Karyotype and gene order evolution from reconstructed extinct ancestors highlight contrasts in genome plasticity of modern rosid crops.
    Murat F; Zhang R; Guizard S; Gavranović H; Flores R; Steinbach D; Quesneville H; Tannier E; Salse J
    Genome Biol Evol; 2015 Jan; 7(3):735-49. PubMed ID: 25637221
    [TBL] [Abstract][Full Text] [Related]  

  • 8. GenomicusPlants: a web resource to study genome evolution in flowering plants.
    Louis A; Murat F; Salse J; Crollius HR
    Plant Cell Physiol; 2015 Jan; 56(1):e4. PubMed ID: 25432975
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evolving Ideas on the Origin and Evolution of Flowers: New Perspectives in the Genomic Era.
    Chanderbali AS; Berger BA; Howarth DG; Soltis PS; Soltis DE
    Genetics; 2016 Apr; 202(4):1255-65. PubMed ID: 27053123
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identifying the basal angiosperm node in chloroplast genome phylogenies: sampling one's way out of the Felsenstein zone.
    Leebens-Mack J; Raubeson LA; Cui L; Kuehl JV; Fourcade MH; Chumley TW; Boore JL; Jansen RK; depamphilis CW
    Mol Biol Evol; 2005 Oct; 22(10):1948-63. PubMed ID: 15944438
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The floral genome: an evolutionary history of gene duplication and shifting patterns of gene expression.
    Soltis DE; Ma H; Frohlich MW; Soltis PS; Albert VA; Oppenheimer DG; Altman NS; dePamphilis C; Leebens-Mack J
    Trends Plant Sci; 2007 Aug; 12(8):358-67. PubMed ID: 17658290
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A deep dive into the ancestral chromosome number and genome size of flowering plants.
    Carta A; Bedini G; Peruzzi L
    New Phytol; 2020 Nov; 228(3):1097-1106. PubMed ID: 32421860
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Gamma paleohexaploidy in the stem lineage of core eudicots: significance for MADS-box gene and species diversification.
    Vekemans D; Proost S; Vanneste K; Coenen H; Viaene T; Ruelens P; Maere S; Van de Peer Y; Geuten K
    Mol Biol Evol; 2012 Dec; 29(12):3793-806. PubMed ID: 22821009
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Origin and early evolution of angiosperms.
    Soltis DE; Bell CD; Kim S; Soltis PS
    Ann N Y Acad Sci; 2008; 1133():3-25. PubMed ID: 18559813
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phylogenomics reveals surprising sets of essential and dispensable clades of MIKC(c)-group MADS-box genes in flowering plants.
    Gramzow L; Theißen G
    J Exp Zool B Mol Dev Evol; 2015 Jun; 324(4):353-62. PubMed ID: 25678468
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular evolution constraints in the floral organ specification gene regulatory network module across 18 angiosperm genomes.
    Davila-Velderrain J; Servin-Marquez A; Alvarez-Buylla ER
    Mol Biol Evol; 2014 Mar; 31(3):560-73. PubMed ID: 24273325
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Flower diversity and angiosperm diversification.
    Soltis PS; Soltis DE
    Methods Mol Biol; 2014; 1110():85-102. PubMed ID: 24395253
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Contrasting Rates of Molecular Evolution and Patterns of Selection among Gymnosperms and Flowering Plants.
    De La Torre AR; Li Z; Van de Peer Y; Ingvarsson PK
    Mol Biol Evol; 2017 Jun; 34(6):1363-1377. PubMed ID: 28333233
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Journey through the past: 150 million years of plant genome evolution.
    Proost S; Pattyn P; Gerats T; Van de Peer Y
    Plant J; 2011 Apr; 66(1):58-65. PubMed ID: 21443623
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The ancient wave of polyploidization events in flowering plants and their facilitated adaptation to environmental stress.
    Zhang L; Wu S; Chang X; Wang X; Zhao Y; Xia Y; Trigiano RN; Jiao Y; Chen F
    Plant Cell Environ; 2020 Dec; 43(12):2847-2856. PubMed ID: 33001478
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.