These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

98 related articles for article (PubMed ID: 28288341)

  • 1. Epitaxy of the bound water phase on hydrophilic surfaces of biopolymers as key mechanism of microwave radiation effects on living objects.
    Kuznetsov DB; Orlova EV; Neschislyaev VA; Volkhin IL; Izmestiev IV; Lunegov IV; Balandina AV; Dianova DG
    Colloids Surf B Biointerfaces; 2017 Jun; 154():40-47. PubMed ID: 28288341
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microwave processing of natural biopolymers--studies on the properties of different starches.
    Szepes A; Hasznos-Nezdei M; Kovács J; Funke Z; Ulrich J; Szabó-Révész P
    Int J Pharm; 2005 Sep; 302(1-2):166-71. PubMed ID: 16102923
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pulsed microwave induced light, sound, and electrical discharge enhanced by a biopolymer.
    Kiel JL; Seaman RL; Mathur SP; Parker JE; Wright JR; Alls JL; Morales PJ
    Bioelectromagnetics; 1999; 20(4):216-23. PubMed ID: 10230935
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The origin of long-range attraction between hydrophobes in water.
    Despa F; Berry RS
    Biophys J; 2007 Jan; 92(2):373-8. PubMed ID: 16997876
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular wring resonances in chain molecules.
    Bohr H; Brunak S; Bohr J
    Bioelectromagnetics; 1997; 18(2):187-9. PubMed ID: 9084871
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interaction of radiofrequency and microwave radiation with living systems. A review of mechanisms.
    Stuchly MA
    Radiat Environ Biophys; 1979 Feb; 16(1):1-14. PubMed ID: 382232
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High-molecular-weight poly(Gly-Val-Gly-Val-Pro) synthesis through microwave irradiation.
    Goto M; Endo T
    J Pept Sci; 2016 Jul; 22(7):452-60. PubMed ID: 27352997
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Escherichia coli growth changes by the mediated effects after low-intensity electromagnetic irradiation of extremely high frequencies.
    Torgomyan H; Hovnanyan K; Trchounian A
    Cell Biochem Biophys; 2013 Apr; 65(3):445-54. PubMed ID: 23076638
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mathematical model of manganese ion catalyzed microwave deactivation of Enterococcus faecalis, Staphylococcus aureus and Escherichia coli.
    Benjamin E; Reznik A; Benjamin E; Williams AL
    Cell Mol Biol (Noisy-le-grand); 2007 May; 53(3):49-54. PubMed ID: 17531149
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microwave method for determing dielectric parameters of living biological objects I.
    Misik S; Masszi G; Torma I
    Acta Biochim Biophys Acad Sci Hung; 1978; 13(3):201-10. PubMed ID: 754453
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Femtosecond Laser Patterning of the Biopolymer Chitosan for Biofilm Formation.
    Estevam-Alves R; Ferreira PH; Coatrini AC; Oliveira ON; Fontana CR; Mendonca CR
    Int J Mol Sci; 2016 Aug; 17(8):. PubMed ID: 27548153
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of high-power microwave radiation with nanosecond pulse duration on some biological objects.
    Bol'shakov MA; Bugaev SP; Goncharik AO; Gunin AV; Evdokimov EV; Klimov AI; Korovin SD; Pegel IV; Rostov VV
    Dokl Biophys; 2000; 370-372():21-4. PubMed ID: 11029032
    [No Abstract]   [Full Text] [Related]  

  • 13. Effects of microwave irradiation on some membrane-related processes in bacteria.
    Kazbekov EN; Vyacheslavov LG
    Gen Physiol Biophys; 1987 Feb; 6(1):57-64. PubMed ID: 3110003
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hydration water dynamics in biopolymers from NMR relaxation in the rotating frame.
    Blicharska B; Peemoeller H; Witek M
    J Magn Reson; 2010 Dec; 207(2):287-93. PubMed ID: 20961779
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Atomic force microscopy measurement of heterogeneity in bacterial surface hydrophobicity.
    Dorobantu LS; Bhattacharjee S; Foght JM; Gray MR
    Langmuir; 2008 May; 24(9):4944-51. PubMed ID: 18355095
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microfiltration of different surface waters with/without coagulation: clear correlations between membrane fouling and hydrophilic biopolymers.
    Kimura K; Tanaka K; Watanabe Y
    Water Res; 2014 Feb; 49():434-43. PubMed ID: 24210507
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Gellan gum-graft-polyaniline--An electrical conducting biopolymer.
    Karthika JS; Vishalakshi B; Naik J
    Int J Biol Macromol; 2016 Jan; 82():61-7. PubMed ID: 26526174
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Role of ionic strength on the relationship of biopolymer conformation, DLVO contributions, and steric interactions to bioadhesion of Pseudomonas putida KT2442.
    Abu-Lail NI; Camesano TA
    Biomacromolecules; 2003; 4(4):1000-12. PubMed ID: 12857085
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Mechanisms of biophysical effects of microwaves].
    Ismailov ESh; Khachirov DG; Ismailova GE; Kudriashov IuB
    Radiats Biol Radioecol; 1998; 38(6):920-3. PubMed ID: 9889788
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microwave induced shift of the main phase transition in phosphatidylcholine membranes.
    Beneduci A; Filippelli L; Cosentino K; Calabrese ML; Massa R; Chidichimo G
    Bioelectrochemistry; 2012 Apr; 84():18-24. PubMed ID: 22082754
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.