BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

102 related articles for article (PubMed ID: 28288377)

  • 1. Properties of modified surface for biosensing interface.
    Tanaka M; Sawaguchi T; Hirata Y; Niwa O; Tawa K; Sasakawa C; Kuraoka K
    J Colloid Interface Sci; 2017 Jul; 497():309-316. PubMed ID: 28288377
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Design and fabrication of biosensing interface for waveguide-mode sensor.
    Tanaka M; Yoshioka K; Hirata Y; Fujimaki M; Kuwahara M; Niwa O
    Langmuir; 2013 Oct; 29(42):13111-20. PubMed ID: 24063697
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Wettability Control of Gold Surfaces Modified with Benzenethiol Derivatives: Water Contact Angle and Thermal Stability.
    Tatara S; Kuzumoto Y; Kitamura M
    J Nanosci Nanotechnol; 2016 Apr; 16(4):3295-300. PubMed ID: 27451620
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Surface Modification of PDMS and Plastics with Zwitterionic Polymers.
    Tanaka M; Kurosawa S
    J Oleo Sci; 2017 Jul; 66(7):699-704. PubMed ID: 28626142
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantitative surface acoustic wave detection based on colloidal gold nanoparticles and their bioconjugates.
    Chiu CS; Gwo S
    Anal Chem; 2008 May; 80(9):3318-26. PubMed ID: 18363384
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fabrication of Biosensing Interface with Monolayers.
    Tanaka M; Niwa O
    Anal Sci; 2021 May; 37(5):673-682. PubMed ID: 33390417
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electrochemical preparation and delivery of melanin-iron covered gold nanoparticles.
    Grumelli D; Vericat C; Benítez G; Ramallo-López JM; Giovanetti L; Requejo F; Moreno MS; Orive AG; Creus AH; Salvarezza RC
    Chemphyschem; 2009 Feb; 10(2):370-3. PubMed ID: 19072961
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Picomolar detection limit on a magnetoresistive biochip after optimization of a thiol-gold based surface chemistry.
    Martins VC; Cardoso FA; Freitas PP; Fonseca LP
    J Nanosci Nanotechnol; 2010 Sep; 10(9):5994-6002. PubMed ID: 21133138
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In situ sensing of metal ion adsorption to a thiolated surface using surface plasmon resonance spectroscopy.
    Moon J; Kang T; Oh S; Hong S; Yi J
    J Colloid Interface Sci; 2006 Jun; 298(2):543-9. PubMed ID: 16458912
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Configuration-controlled Au nanocluster arrays on inverse micelle nano-patterns: versatile platforms for SERS and SPR sensors.
    Jang YH; Chung K; Quan LN; Špačková B; Šípová H; Moon S; Cho WJ; Shin HY; Jang YJ; Lee JE; Kochuveedu ST; Yoon MJ; Kim J; Yoon S; Kim JK; Kim D; Homola J; Kim DH
    Nanoscale; 2013 Dec; 5(24):12261-71. PubMed ID: 24150526
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Monolayers of 3-mercaptopropyl-amino acid to reduce the nonspecific adsorption of serum proteins on the surface of biosensors.
    Bolduc OR; Masson JF
    Langmuir; 2008 Oct; 24(20):12085-91. PubMed ID: 18823086
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of surface wettability on ion-specific protein adsorption.
    Wang X; Liu G; Zhang G
    Langmuir; 2012 Oct; 28(41):14642-53. PubMed ID: 22992017
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Zeta-potential data reliability of gold nanoparticle biomolecular conjugates and its application in sensitive quantification of surface absorbed protein.
    Wang W; Ding X; Xu Q; Wang J; Wang L; Lou X
    Colloids Surf B Biointerfaces; 2016 Dec; 148():541-548. PubMed ID: 27690243
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nanoparticle adsorption at liquid-vapor surfaces: influence of nanoparticle thermodynamics, wettability, and line tension.
    Wi HS; Cingarapu S; Klabunde KJ; Law BM
    Langmuir; 2011 Aug; 27(16):9979-84. PubMed ID: 21668023
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Placement of alkanethiol-capped Au nanoparticles using organic solvents.
    Yim TJ; Choi H; Zhang X
    J Colloid Interface Sci; 2010 Jun; 346(1):17-22. PubMed ID: 20332051
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A sensitive choline biosensor with supramolecular architecture.
    Zhang Z; Wang J; Wang X; Wang Y; Yang X
    Talanta; 2010 Jul; 82(2):483-7. PubMed ID: 20602924
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Label-free immunosensor based on gold nanoparticle silver enhancement.
    Yang M; Wang C
    Anal Biochem; 2009 Feb; 385(1):128-31. PubMed ID: 18992214
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hybridization conditions of oligonucleotide-capped gold nanoparticles for SPR sensing of microRNA.
    Hong L; Lu M; Dinel MP; Blain P; Peng W; Gu H; Masson JF
    Biosens Bioelectron; 2018 Jun; 109():230-236. PubMed ID: 29567568
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synthesis of oligo(lactose)-based thiols and their self-assembly onto gold surfaces.
    Fyrner T; Ederth T; Aili D; Liedberg B; Konradsson P
    Colloids Surf B Biointerfaces; 2013 May; 105():187-93. PubMed ID: 23376745
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Competitive adsorption of thiolated poly(ethylene glycol) and alkane-thiols on gold nanoparticles and its effect on cluster formation.
    Larson-Smith K; Pozzo DC
    Langmuir; 2012 Sep; 28(37):13157-65. PubMed ID: 22924831
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.