These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

383 related articles for article (PubMed ID: 28288640)

  • 1. Overexpression of a C
    Yang L; Christakou E; Vang J; Lübeck M; Lübeck PS
    Microb Cell Fact; 2017 Mar; 16(1):43. PubMed ID: 28288640
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Co-consumption of glucose and xylose for organic acid production by Aspergillus carbonarius cultivated in wheat straw hydrolysate.
    Yang L; Lübeck M; Souroullas K; Lübeck PS
    World J Microbiol Biotechnol; 2016 Apr; 32(4):57. PubMed ID: 26925619
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Disruption of a putative mitochondrial oxaloacetate shuttle protein in Aspergillus carbonarius results in secretion of malic acid at the expense of citric acid production.
    Yang L; Linde T; Hossain AH; Lübeck M; Punt PJ; Lübeck PS
    BMC Biotechnol; 2019 Nov; 19(1):72. PubMed ID: 31684928
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhanced succinic acid production in Aspergillus saccharolyticus by heterologous expression of fumarate reductase from Trypanosoma brucei.
    Yang L; Lübeck M; Ahring BK; Lübeck PS
    Appl Microbiol Biotechnol; 2016 Feb; 100(4):1799-1809. PubMed ID: 26521243
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification and engineering a C
    Cao W; Yan L; Li M; Liu X; Xu Y; Xie Z; Liu H
    Appl Microbiol Biotechnol; 2020 Nov; 104(22):9773-9783. PubMed ID: 32997202
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Disruption and overexpression of 6-phosphofructo-2-kinase influence organic acid production in Aspergillus carbonarius ITEM 5010.
    Yang L; Nilsson L; Lübeck M; Ahring BK; Bruno KS; Lübeck PS
    World J Microbiol Biotechnol; 2020 Jun; 36(7):98. PubMed ID: 32601748
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of heterologous expression of phosphoenolpyruvate carboxykinase and phosphoenolpyruvate carboxylase on organic acid production in Aspergillus carbonarius.
    Yang L; Lübeck M; Lübeck PS
    J Ind Microbiol Biotechnol; 2015 Nov; 42(11):1533-45. PubMed ID: 26403577
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Engineering rTCA pathway and C4-dicarboxylate transporter for L-malic acid production.
    Chen X; Wang Y; Dong X; Hu G; Liu L
    Appl Microbiol Biotechnol; 2017 May; 101(10):4041-4052. PubMed ID: 28229207
    [TBL] [Abstract][Full Text] [Related]  

  • 9. C4-dicarboxylic acid production by overexpressing the reductive TCA pathway.
    Zhang T; Ge C; Deng L; Tan T; Wang F
    FEMS Microbiol Lett; 2015 May; 362(9):. PubMed ID: 25862576
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transport and metabolism of fumaric acid in Saccharomyces cerevisiae in aerobic glucose-limited chemostat culture.
    Shah MV; van Mastrigt O; Heijnen JJ; van Gulik WM
    Yeast; 2016 Apr; 33(4):145-61. PubMed ID: 26683700
    [TBL] [Abstract][Full Text] [Related]  

  • 11. C4-Dicarboxylate Utilization in Aerobic and Anaerobic Growth.
    Unden G; Strecker A; Kleefeld A; Kim OB
    EcoSal Plus; 2016 Jun; 7(1):. PubMed ID: 27415771
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Na+-coupled C4-dicarboxylate transporter (Asuc_0304) and aerobic growth of Actinobacillus succinogenes on C4-dicarboxylates.
    Rhie MN; Yoon HE; Oh HY; Zedler S; Unden G; Kim OB
    Microbiology (Reading); 2014 Jul; 160(Pt 7):1533-1544. PubMed ID: 24742960
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Engineering energetically efficient transport of dicarboxylic acids in yeast
    Darbani B; Stovicek V; van der Hoek SA; Borodina I
    Proc Natl Acad Sci U S A; 2019 Sep; 116(39):19415-19420. PubMed ID: 31467169
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Deletion of glucose oxidase changes the pattern of organic acid production in Aspergillus carbonarius.
    Yang L; Lübeck M; Lübeck PS
    AMB Express; 2014; 4():54. PubMed ID: 25401063
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Overexpression of the DHA1 family, ChlH and ChlK, leads to enhanced dicarboxylic acids production in koji fungi, Aspergillus luchuensis mut. kawachii and Aspergillus oryzae.
    Nishitani A; Hiramatsu K; Kadooka C; Hiroshima K; Sawada K; Okutsu K; Yoshizaki Y; Takamine K; Goto M; Tamaki H; Futagami T
    J Biosci Bioeng; 2024 Apr; 137(4):281-289. PubMed ID: 38331655
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The global regulator LaeA controls production of citric acid and endoglucanases in Aspergillus carbonarius.
    Linde T; Zoglowek M; Lübeck M; Frisvad JC; Lübeck PS
    J Ind Microbiol Biotechnol; 2016 Aug; 43(8):1139-47. PubMed ID: 27169528
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Metabolic engineering of Aspergillus niger via ribonucleoprotein-based CRISPR-Cas9 system for succinic acid production from renewable biomass.
    Yang L; Henriksen MM; Hansen RS; Lübeck M; Vang J; Andersen JE; Bille S; Lübeck PS
    Biotechnol Biofuels; 2020 Dec; 13(1):206. PubMed ID: 33317620
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Metabolic engineering of Aspergillus oryzae NRRL 3488 for increased production of L-malic acid.
    Brown SH; Bashkirova L; Berka R; Chandler T; Doty T; McCall K; McCulloch M; McFarland S; Thompson S; Yaver D; Berry A
    Appl Microbiol Biotechnol; 2013 Oct; 97(20):8903-12. PubMed ID: 23925533
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Improved Production of Malic Acid in
    Xu Y; Zhou Y; Cao W; Liu H
    ACS Synth Biol; 2020 Jun; 9(6):1418-1425. PubMed ID: 32379964
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Metabolic and Microbial Community Engineering for Four-Carbon Dicarboxylic Acid Production from CO
    Hidese R; Matsuda M; Kajikawa M; Osanai T; Kondo A; Hasunuma T
    ACS Synth Biol; 2022 Dec; 11(12):4054-4064. PubMed ID: 36445137
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.