These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 28288824)

  • 1. Switching Markov decoders for asynchronous trajectory reconstruction from ECoG signals in monkeys for BCI applications.
    Schaeffer MC; Aksenova T
    J Physiol Paris; 2016 Nov; 110(4 Pt A):348-360. PubMed ID: 28288824
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An adaptive closed-loop ECoG decoder for long-term and stable bimanual control of an exoskeleton by a tetraplegic.
    Moly A; Costecalde T; Martel F; Martin M; Larzabal C; Karakas S; Verney A; Charvet G; Chabardes S; Benabid AL; Aksenova T
    J Neural Eng; 2022 Mar; 19(2):. PubMed ID: 35234665
    [No Abstract]   [Full Text] [Related]  

  • 3. Unsupervised adaptation of an ECoG based brain-computer interface using neural correlates of task performance.
    Rouanne V; Costecalde T; Benabid AL; Aksenova T
    Sci Rep; 2022 Dec; 12(1):21316. PubMed ID: 36494390
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Convolutional Neural Network for the Detection of Asynchronous Steady State Motion Visual Evoked Potential.
    Zhang X; Xu G; Mou X; Ravi A; Li M; Wang Y; Jiang N
    IEEE Trans Neural Syst Rehabil Eng; 2019 Jun; 27(6):1303-1311. PubMed ID: 31071044
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Stable and artifact-resistant decoding of 3D hand trajectories from ECoG signals using the generalized additive model.
    Eliseyev A; Aksenova T
    J Neural Eng; 2014 Dec; 11(6):066005. PubMed ID: 25341256
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Adaptive estimation of hand movement trajectory in an EEG based brain-computer interface system.
    Robinson N; Guan C; Vinod AP
    J Neural Eng; 2015 Dec; 12(6):066019. PubMed ID: 26501230
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Unscented Kalman filter for neural decoding of human treadmill walking from non-invasive electroencephalography.
    Trieu Phat Luu ; Yongtian He ; Nakagame S; Gorges J; Nathan K; Contreras-Vidal JL
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():1548-1551. PubMed ID: 28268622
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cortical Topography of Error-Related High-Frequency Potentials During Erroneous Control in a Continuous Control Brain-Computer Interface.
    Wilson NR; Sarma D; Wander JD; Weaver KE; Ojemann JG; Rao RPN
    Front Neurosci; 2019; 13():502. PubMed ID: 31191218
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Closed-loop cortical control of virtual reach and posture using Cartesian and joint velocity commands.
    Young D; Willett F; Memberg WD; Murphy B; Rezaii P; Walter B; Sweet J; Miller J; Shenoy KV; Hochberg LR; Kirsch RF; Ajiboye AB
    J Neural Eng; 2019 Apr; 16(2):026011. PubMed ID: 30523839
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An Improved Unscented Kalman Filter Based Decoder for Cortical Brain-Machine Interfaces.
    Li S; Li J; Li Z
    Front Neurosci; 2016; 10():587. PubMed ID: 28066170
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multiscale brain-machine interface decoders.
    Han-Lin Hsieh ; Shanechi MM
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():6361-6364. PubMed ID: 28269704
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Brain-state classification and a dual-state decoder dramatically improve the control of cursor movement through a brain-machine interface.
    Sachs NA; Ruiz-Torres R; Perreault EJ; Miller LE
    J Neural Eng; 2016 Feb; 13(1):016009. PubMed ID: 26655766
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Retrospectively supervised click decoder calibration for self-calibrating point-and-click brain-computer interfaces.
    Jarosiewicz B; Sarma AA; Saab J; Franco B; Cash SS; Eskandar EN; Hochberg LR
    J Physiol Paris; 2016 Nov; 110(4 Pt A):382-391. PubMed ID: 28286237
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Shared Prosthetic Control Based on Multiple Movement Intent Decoders.
    Dantas H; Hansen TC; Warren DJ; Mathews VJ
    IEEE Trans Biomed Eng; 2021 May; 68(5):1547-1556. PubMed ID: 33326374
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Data-Driven Transducer Design and Identification for Internally-Paced Motor Brain Computer Interfaces: A Review.
    Schaeffer MC; Aksenova T
    Front Neurosci; 2018; 12():540. PubMed ID: 30158847
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Adaptive neuron-to-EMG decoder training for FES neuroprostheses.
    Ethier C; Acuna D; Solla SA; Miller LE
    J Neural Eng; 2016 Aug; 13(4):046009. PubMed ID: 27247280
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Online adaptive group-wise sparse Penalized Recursive Exponentially Weighted N-way Partial Least Square for epidural intracranial BCI.
    Moly A; Aksenov A; Martel F; Aksenova T
    Front Hum Neurosci; 2023; 17():1075666. PubMed ID: 36950147
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Continuous Decoding of Hand Movement From EEG Signals Using Phase-Based Connectivity Features.
    Hosseini SM; Shalchyan V
    Front Hum Neurosci; 2022; 16():901285. PubMed ID: 35845243
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An empirical comparison of neural networks and machine learning algorithms for EEG gait decoding.
    Nakagome S; Luu TP; He Y; Ravindran AS; Contreras-Vidal JL
    Sci Rep; 2020 Mar; 10(1):4372. PubMed ID: 32152333
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Decoding Three-Dimensional Trajectory of Executed and Imagined Arm Movements From Electroencephalogram Signals.
    Kim JH; Bießmann F; Lee SW
    IEEE Trans Neural Syst Rehabil Eng; 2015 Sep; 23(5):867-76. PubMed ID: 25474811
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.