BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 28288905)

  • 1. Bioinformatic approaches to interrogating vitamin D receptor signaling.
    Campbell MJ
    Mol Cell Endocrinol; 2017 Sep; 453():3-13. PubMed ID: 28288905
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Integration of VDR genome wide binding and GWAS genetic variation data reveals co-occurrence of VDR and NF-κB binding that is linked to immune phenotypes.
    Singh PK; van den Berg PR; Long MD; Vreugdenhil A; Grieshober L; Ochs-Balcom HM; Wang J; Delcambre S; Heikkinen S; Carlberg C; Campbell MJ; Sucheston-Campbell LE
    BMC Genomics; 2017 Feb; 18(1):132. PubMed ID: 28166722
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Integrative genomic approaches to dissect clinically-significant relationships between the VDR cistrome and gene expression in primary colon cancer.
    Long MD; Campbell MJ
    J Steroid Biochem Mol Biol; 2017 Oct; 173():130-138. PubMed ID: 28027912
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High-Dimensional Data Approaches to Understanding Nuclear Hormone Receptor Signaling.
    Campbell MJ
    Methods Mol Biol; 2019; 1966():291-311. PubMed ID: 31041756
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular endocrinology of vitamin D on the epigenome level.
    Carlberg C
    Mol Cell Endocrinol; 2017 Sep; 453():14-21. PubMed ID: 28315703
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dynamics of 1α,25-dihydroxyvitamin D3-dependent chromatin accessibility of early vitamin D receptor target genes.
    Seuter S; Pehkonen P; Heikkinen S; Carlberg C
    Biochim Biophys Acta; 2013 Dec; 1829(12):1266-75. PubMed ID: 24185200
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Combined Bioinformatics and Literature Based Approach for Identification of Long Non-coding RNAs That Modulate Vitamin D Receptor Signaling in Breast Cancer.
    Kholghi Oskooei V; Ghafouri-Fard S; Omrani Mir D
    Klin Onkol; 2018; 31(4):264-269. PubMed ID: 30541308
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular network of chromatin immunoprecipitation followed by deep sequencing-based vitamin D receptor target genes.
    Satoh J; Tabunoki H
    Mult Scler; 2013 Jul; 19(8):1035-45. PubMed ID: 23401126
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Vitamin D receptor signaling and its therapeutic implications: Genome-wide and structural view.
    Carlberg C; Molnár F
    Can J Physiol Pharmacol; 2015 May; 93(5):311-8. PubMed ID: 25741777
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A genomic perspective on vitamin D signaling.
    Carlberg C; Seuter S
    Anticancer Res; 2009 Sep; 29(9):3485-93. PubMed ID: 19667142
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A ChIP-seq defined genome-wide map of vitamin D receptor binding: associations with disease and evolution.
    Ramagopalan SV; Heger A; Berlanga AJ; Maugeri NJ; Lincoln MR; Burrell A; Handunnetthi L; Handel AE; Disanto G; Orton SM; Watson CT; Morahan JM; Giovannoni G; Ponting CP; Ebers GC; Knight JC
    Genome Res; 2010 Oct; 20(10):1352-60. PubMed ID: 20736230
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The impact of VDR expression and regulation in vivo.
    Lee SM; Meyer MB; Benkusky NA; O'Brien CA; Pike JW
    J Steroid Biochem Mol Biol; 2018 Mar; 177():36-45. PubMed ID: 28602960
    [TBL] [Abstract][Full Text] [Related]  

  • 13. What do we learn from the genome-wide perspective on vitamin D3?
    Carlberg C
    Anticancer Res; 2015 Feb; 35(2):1143-51. PubMed ID: 25667505
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The vitamin D hormone and its nuclear receptor: molecular actions and disease states.
    Haussler MR; Haussler CA; Jurutka PW; Thompson PD; Hsieh JC; Remus LS; Selznick SH; Whitfield GK
    J Endocrinol; 1997 Sep; 154 Suppl():S57-73. PubMed ID: 9379138
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Vitamin D
    Hu G; Dong T; Wang S; Jing H; Chen J
    EBioMedicine; 2019 Jul; 45():563-577. PubMed ID: 31278070
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The vitamin D-dependent transcriptome of human monocytes.
    Neme A; Nurminen V; Seuter S; Carlberg C
    J Steroid Biochem Mol Biol; 2016 Nov; 164():180-187. PubMed ID: 26523676
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhancers located within two introns of the vitamin D receptor gene mediate transcriptional autoregulation by 1,25-dihydroxyvitamin D3.
    Zella LA; Kim S; Shevde NK; Pike JW
    Mol Endocrinol; 2006 Jun; 20(6):1231-47. PubMed ID: 16497728
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The first genome-wide view of vitamin D receptor locations and their mechanistic implications.
    Carlberg C; Seuter S; Heikkinen S
    Anticancer Res; 2012 Jan; 32(1):271-82. PubMed ID: 22213316
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Non-classical mechanisms of transcriptional regulation by the vitamin D receptor: insights into calcium homeostasis, immune system regulation and cancer chemoprevention.
    Dimitrov V; Salehi-Tabar R; An BS; White JH
    J Steroid Biochem Mol Biol; 2014 Oct; 144 Pt A():74-80. PubMed ID: 23911725
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Controlling the chromatin organization of vitamin D target genes by multiple vitamin D receptor binding sites.
    Carlberg C; Dunlop TW; Saramäki A; Sinkkonen L; Matilainen M; Väisänen S
    J Steroid Biochem Mol Biol; 2007 Mar; 103(3-5):338-43. PubMed ID: 17234401
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.