These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
22. Comparative analysis of whey proteins in donkey colostrum and mature milk using quantitative proteomics. Li W; Li M; Cao X; Han H; Kong F; Yue X Food Res Int; 2020 Jan; 127():108741. PubMed ID: 31882075 [TBL] [Abstract][Full Text] [Related]
23. Proteomic characterization and comparison of mammalian milk fat globule proteomes by iTRAQ analysis. Yang Y; Zheng N; Zhao X; Zhang Y; Han R; Ma L; Zhao S; Li S; Guo T; Wang J J Proteomics; 2015 Feb; 116():34-43. PubMed ID: 25576853 [TBL] [Abstract][Full Text] [Related]
24. Shotgun proteomic analysis of porcine colostrum and mature milk. Ogawa S; Tsukahara T; Nishibayashi R; Nakatani M; Okutani M; Nakanishi N; Ushida K; Inoue R Anim Sci J; 2014 Apr; 85(4):440-8. PubMed ID: 24450292 [TBL] [Abstract][Full Text] [Related]
26. Proteomic analysis of whey proteins in the colostrum and mature milk of Xinong Saanen goats. Sun Y; Wang C; Sun X; Guo M J Dairy Sci; 2020 Feb; 103(2):1164-1174. PubMed ID: 31837799 [TBL] [Abstract][Full Text] [Related]
27. Proteomic analysis of differentially expressed whey proteins in Guanzhong goat milk and Holstein cow milk by iTRAQ coupled with liquid chromatography-tandem mass spectrometry. Sun Y; Wang C; Sun X; Guo M J Dairy Sci; 2020 Oct; 103(10):8732-8740. PubMed ID: 32713692 [TBL] [Abstract][Full Text] [Related]
28. Developmental changes in the milk fat globule membrane proteome during the transition from colostrum to milk. Reinhardt TA; Lippolis JD J Dairy Sci; 2008 Jun; 91(6):2307-18. PubMed ID: 18487653 [TBL] [Abstract][Full Text] [Related]
29. Quantitative analysis of differentially expressed milk fat globule membrane proteins between donkey and bovine colostrum based on high-performance liquid chromatography with tandem mass spectrometry proteomics. Li M; Zheng K; Song W; Yu H; Zhang X; Yue X; Li Q J Dairy Sci; 2021 Dec; 104(12):12207-12215. PubMed ID: 34531055 [TBL] [Abstract][Full Text] [Related]
30. Identification and comparison of exosomal microRNAs in the milk and colostrum of two different cow breeds. Özdemir S Gene; 2020 Jun; 743():144609. PubMed ID: 32220600 [TBL] [Abstract][Full Text] [Related]
31. Exosomes with immune modulatory features are present in human breast milk. Admyre C; Johansson SM; Qazi KR; Filén JJ; Lahesmaa R; Norman M; Neve EP; Scheynius A; Gabrielsson S J Immunol; 2007 Aug; 179(3):1969-78. PubMed ID: 17641064 [TBL] [Abstract][Full Text] [Related]
32. Colostrum and milk protein rankings and ratios of importance to neonatal calf health using a proteomics approach. Nissen A; Andersen PH; Bendixen E; Ingvartsen KL; Røntved CM J Dairy Sci; 2017 Apr; 100(4):2711-2728. PubMed ID: 28189329 [TBL] [Abstract][Full Text] [Related]
33. An in depth proteomic analysis based on ProteoMiner, affinity chromatography and nano-HPLC-MS/MS to explain the potential health benefits of bovine colostrum. Altomare A; Fasoli E; Colzani M; Paredes Parra XM; Ferrari M; Cilurzo F; Rumio C; Cannizzaro L; Carini M; Righetti PG; Aldini G J Pharm Biomed Anal; 2016 Mar; 121():297-306. PubMed ID: 26809613 [TBL] [Abstract][Full Text] [Related]
34. Comparison of Whey Proteome and Glycoproteome in Bovine Colostrum and Mature Milk. Zhang W; Lu J; Chen B; Gao P; Song B; Zhang S; Pang X; Hettinga K; Lyu J J Agric Food Chem; 2023 Jul; 71(28):10863-10876. PubMed ID: 37410070 [TBL] [Abstract][Full Text] [Related]
35. A complete proteomic profile of human and bovine milk exosomes by liquid chromatography mass spectrometry. Vaswani KM; Peiris H; Qin Koh Y; Hill RJ; Harb T; Arachchige BJ; Logan J; Reed S; Davies PSW; Mitchell MD Expert Rev Proteomics; 2021 Aug; 18(8):719-735. PubMed ID: 34551655 [TBL] [Abstract][Full Text] [Related]
36. Bovine Milk Comparative Proteome Analysis from Early, Mid, and Late Lactation in the Cattle Breed, Malnad Gidda (Bos indicus). Mol P; Kannegundla U; Dey G; Gopalakrishnan L; Dammalli M; Kumar M; Patil AH; Basavaraju M; Rao A; Ramesha KP; Prasad TSK OMICS; 2018 Mar; 22(3):223-235. PubMed ID: 29389253 [TBL] [Abstract][Full Text] [Related]
37. Human milk proteins differentiate over the sex of newborns and across stages of lactation. Bernardes-Loch RM; Ribeiro AC; Ramírez-López CJ; Loch Gomes RA; Barros E; Filomeno Fontes EA; Baracat-Pereira MC Clin Nutr ESPEN; 2024 Aug; 62():144-156. PubMed ID: 38901936 [TBL] [Abstract][Full Text] [Related]
38. Detection of cow's milk proteins and minor components in human milk using proteomics techniques. Coscia A; Orrù S; Di Nicola P; Giuliani F; Varalda A; Peila C; Fabris C; Conti A; Bertino E J Matern Fetal Neonatal Med; 2012 Oct; 25 Suppl 4():54-6. PubMed ID: 22958018 [TBL] [Abstract][Full Text] [Related]
39. Differences in the Triacylglycerol and Fatty Acid Compositions of Human Colostrum and Mature Milk. Zhao P; Zhang S; Liu L; Pang X; Yang Y; Lu J; Lv J J Agric Food Chem; 2018 May; 66(17):4571-4579. PubMed ID: 29658706 [TBL] [Abstract][Full Text] [Related]
40. Revealing the diversity of endogenous peptides and parent proteins in human colostrum and mature milk through peptidomics analysis. Ning J; Yang M; Zhu Q; Liu X; Li M; Luo X; Yue X Food Chem; 2024 Jul; 445():138651. PubMed ID: 38359565 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]