These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 28290541)

  • 1. Hsp90 dependence of a kinase is determined by its conformational landscape.
    Luo Q; Boczek EE; Wang Q; Buchner J; Kaila VR
    Sci Rep; 2017 Mar; 7():43996. PubMed ID: 28290541
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Conformational processing of oncogenic v-Src kinase by the molecular chaperone Hsp90.
    Boczek EE; Reefschläger LG; Dehling M; Struller TJ; Häusler E; Seidl A; Kaila VR; Buchner J
    Proc Natl Acad Sci U S A; 2015 Jun; 112(25):E3189-98. PubMed ID: 26056257
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Maturation of the tyrosine kinase c-src as a kinase and as a substrate depends on the molecular chaperone Hsp90.
    Xu Y; Singer MA; Lindquist S
    Proc Natl Acad Sci U S A; 1999 Jan; 96(1):109-14. PubMed ID: 9874780
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interaction of HSP90 to N-WASP leads to activation and protection from proteasome-dependent degradation.
    Park SJ; Suetsugu S; Takenawa T
    EMBO J; 2005 Apr; 24(8):1557-70. PubMed ID: 15791211
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Thr90 phosphorylation of Hsp90α by protein kinase A regulates its chaperone machinery.
    Wang X; Lu XA; Song X; Zhuo W; Jia L; Jiang Y; Luo Y
    Biochem J; 2012 Jan; 441(1):387-97. PubMed ID: 21919888
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular determinants of Hsp90 dependence of Src kinase revealed by deep mutational scanning.
    Nguyen V; Ahler E; Sitko KA; Stephany JJ; Maly DJ; Fowler DM
    Protein Sci; 2023 Jul; 32(7):e4656. PubMed ID: 37167432
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modular folding and evidence for phosphorylation-induced stabilization of an hsp90-dependent kinase.
    Hartson SD; Ottinger EA; Huang W; Barany G; Burn P; Matts RL
    J Biol Chem; 1998 Apr; 273(14):8475-82. PubMed ID: 9525961
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A cell-based screen for inhibitors of protein folding and degradation.
    Boschelli F; Golas JM; Petersen R; Lau V; Chen L; Tkach D; Zhao Q; Fruhling DS; Liu H; Nam C; Arndt KT
    Cell Stress Chaperones; 2010 Nov; 15(6):913-27. PubMed ID: 20717760
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Possible role for serine/threonine phosphorylation in the regulation of the heteroprotein complex between the hsp90 stress protein and the pp60v-src tyrosine kinase.
    Mimnaugh EG; Worland PJ; Whitesell L; Neckers LM
    J Biol Chem; 1995 Dec; 270(48):28654-9. PubMed ID: 7499384
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Plasticity of the Hsp90 Co-chaperone System.
    Sahasrabudhe P; Rohrberg J; Biebl MM; Rutz DA; Buchner J
    Mol Cell; 2017 Sep; 67(6):947-961.e5. PubMed ID: 28890336
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structural and functional analysis of the middle segment of hsp90: implications for ATP hydrolysis and client protein and cochaperone interactions.
    Meyer P; Prodromou C; Hu B; Vaughan C; Roe SM; Panaretou B; Piper PW; Pearl LH
    Mol Cell; 2003 Mar; 11(3):647-58. PubMed ID: 12667448
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Src-Abl tyrosine kinase chimeras: replacement of the adenine binding pocket of c-Abl with v-Src to swap nucleotide and inhibitor specificities.
    Liu Y; Witucki LA; Shah K; Bishop AC; Shokat KM
    Biochemistry; 2000 Nov; 39(47):14400-8. PubMed ID: 11087392
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Atomistic simulations and network-based modeling of the Hsp90-Cdc37 chaperone binding with Cdk4 client protein: A mechanism of chaperoning kinase clients by exploiting weak spots of intrinsically dynamic kinase domains.
    Czemeres J; Buse K; Verkhivker GM
    PLoS One; 2017; 12(12):e0190267. PubMed ID: 29267381
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Oncogenic mutations reduce the stability of SRC kinase.
    Falsone SF; Leptihn S; Osterauer A; Haslbeck M; Buchner J
    J Mol Biol; 2004 Nov; 344(1):281-91. PubMed ID: 15504417
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Heat-shock protein hsp90 governs the activity of pp60v-src kinase.
    Xu Y; Lindquist S
    Proc Natl Acad Sci U S A; 1993 Aug; 90(15):7074-8. PubMed ID: 7688470
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Cdc37 protein kinase-binding domain is sufficient for protein kinase activity and cell viability.
    Lee P; Rao J; Fliss A; Yang E; Garrett S; Caplan AJ
    J Cell Biol; 2002 Dec; 159(6):1051-9. PubMed ID: 12499358
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Src-mediated phosphorylation of Hsp90 in response to vascular endothelial growth factor (VEGF) is required for VEGF receptor-2 signaling to endothelial NO synthase.
    Duval M; Le Boeuf F; Huot J; Gratton JP
    Mol Biol Cell; 2007 Nov; 18(11):4659-68. PubMed ID: 17855507
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The molecular chaperone Hsp90 is required for signal transduction by wild-type Hck and maintenance of its constitutively active counterpart.
    Scholz GM; Hartson SD; Cartledge K; Volk L; Matts RL; Dunn AR
    Cell Growth Differ; 2001 Aug; 12(8):409-17. PubMed ID: 11504706
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Catalytically Disabled Double Mutant of Src Tyrosine Kinase Can Be Stabilized into an Active-Like Conformation.
    Meng Y; Ahuja LG; Kornev AP; Taylor SS; Roux B
    J Mol Biol; 2018 Mar; 430(6):881-889. PubMed ID: 29410316
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The middle domain of Hsp90 acts as a discriminator between different types of client proteins.
    Hawle P; Siepmann M; Harst A; Siderius M; Reusch HP; Obermann WM
    Mol Cell Biol; 2006 Nov; 26(22):8385-95. PubMed ID: 16982694
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.