These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 28290556)

  • 1. Porewater methane transport within the gas vesicles of diurnally migrating Chaoborus spp.: An energetic advantage.
    McGinnis DF; Flury S; Tang KW; Grossart HP
    Sci Rep; 2017 Mar; 7():44478. PubMed ID: 28290556
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The phantom midge menace: Migratory Chaoborus larvae maintain poor ecosystem state in eutrophic inland waters.
    Tang KW; Flury S; Vachon D; Ordóñez C; McGinnis DF
    Water Res; 2018 Aug; 139():30-37. PubMed ID: 29626727
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chaoborus spp. Transport CH
    Carey CC; McClure RP; Doubek JP; Lofton ME; Ward NK; Scott DT
    Environ Sci Technol; 2018 Feb; 52(3):1165-1173. PubMed ID: 29262250
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Chaoborus pump: Migrating phantom midge larvae sustain hypolimnetic oxygen deficiency and nutrient internal loading in lakes.
    Tang KW; Flury S; Grossart HP; McGinnis DF
    Water Res; 2017 Oct; 122():36-41. PubMed ID: 28587914
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Trophic state changes can affect the importance of methane-derived carbon in aquatic food webs.
    Schilder J; van Hardenbroek M; Bodelier P; Kirilova EP; Leuenberger M; Lotter AF; Heiri O
    Proc Biol Sci; 2017 Jun; 284(1857):. PubMed ID: 28637853
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Stable isotopic biogeochemistry of carbon and nitrogen in a perennially ice-covered Antarctic lake.
    Wharton RA; Lyons WB; Des Marais DJ
    Chem Geol; 1993; 107():159-72. PubMed ID: 11539299
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Organic matter lability modifies the vertical structure of methane-related microbial communities in lake sediments.
    Rissanen AJ; Jilbert T; Simojoki A; Mangayil R; Aalto SL; Khanongnuch R; Peura S; Jäntti H
    Microbiol Spectr; 2023 Sep; 11(5):e0195523. PubMed ID: 37698418
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Drivers of spatial and seasonal variations of CO
    Sun H; Yu R; Liu X; Cao Z; Li X; Zhang Z; Wang J; Zhuang S; Ge Z; Zhang L; Sun L; Lorke A; Yang J; Lu C; Lu X
    Water Res; 2022 Aug; 222():118916. PubMed ID: 35921715
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Contribution of sediment respiration to summer CO2 emission from low productive boreal and subarctic lakes.
    Algesten G; Sobek S; Bergström AK; Jonsson A; Tranvik LJ; Jansson M
    Microb Ecol; 2005 Nov; 50(4):529-35. PubMed ID: 16341642
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Methane distribution patterns along a transect of Lake Fuxian, a deep oligotrophic lake in China.
    Li B; Gu Q; Miao Y; Luo W; Xing P; Wu QL
    Environ Sci Pollut Res Int; 2020 Jul; 27(21):25848-25860. PubMed ID: 31392622
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Shifts in coastal sediment oxygenation cause pronounced changes in microbial community composition and associated metabolism.
    Broman E; Sjöstedt J; Pinhassi J; Dopson M
    Microbiome; 2017 Aug; 5(1):96. PubMed ID: 28793929
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Estimation of total flux of polycyclic aromatic hydrocarbons facilitated by methane ebullition into water column from global lake sediments.
    Sun T; Li W; Yin K
    Water Res; 2021 Oct; 204():117611. PubMed ID: 34509869
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison of mercury speciation and distribution in the water column and sediments between the algal type zone and the macrophytic type zone in a hypereutrophic lake (Dianchi Lake) in Southwestern China.
    Wang S; Zhang M; Li B; Xing D; Wang X; Wei C; Jia Y
    Sci Total Environ; 2012 Feb; 417-418():204-13. PubMed ID: 22265601
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Diversity of active aerobic methanotrophs along depth profiles of arctic and subarctic lake water column and sediments.
    He R; Wooller MJ; Pohlman JW; Quensen J; Tiedje JM; Leigh MB
    ISME J; 2012 Oct; 6(10):1937-48. PubMed ID: 22592821
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microcosm studies on anaerobic phosphate flux and mineralization of lake sediment organic carbon.
    Song J; Luo Y; Zhao Q; Christie P
    J Environ Qual; 2004; 33(6):2353-6. PubMed ID: 15537958
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Synergy of Algal Sedimentation and Sediment Capping for Methane Emission Control in Bloom Waters].
    Zhu L; Yu JH; Shi WQ; Yi QT; Cao HY; Pu YY
    Huan Jing Ke Xue; 2019 Sep; 40(9):4238-4243. PubMed ID: 31854890
    [TBL] [Abstract][Full Text] [Related]  

  • 17. DNA-SIP reveals an overlooked methanotroph, Crenothrix sp., involved in methane consumption in shallow lake sediments.
    Yang Y; Chen J; Pratscher J; Xie S
    Sci Total Environ; 2022 Mar; 814():152742. PubMed ID: 34974014
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Differentiation between sediment and hypolimnion methanogen communities in humic lakes.
    Youngblut ND; Dell'aringa M; Whitaker RJ
    Environ Microbiol; 2014 May; 16(5):1411-23. PubMed ID: 24237594
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A new gypsum-based technique to reduce methane and phophorus release from sediments of eutrophied lakes: (gypsum treatment to reduce internal loading).
    Varjo E; Liikanen A; Salonen VP; Martikainen PJ
    Water Res; 2003 Jan; 37(1):1-10. PubMed ID: 12465782
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fluxes in CO
    Li X; Yu R; Wang J; Sun H; Lu C; Liu X; Ren X; Zhuang S; Guo Z; Lu X
    J Environ Manage; 2023 Oct; 344():118314. PubMed ID: 37343475
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.