These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 28290567)

  • 1. Tracking areal lithium densities from neutron activation - quantitative Li determination in self-organized TiO
    Portenkirchner E; Neri G; Lichtinger J; Brumbarov J; Rüdiger C; Gernhäuser R; Kunze-Liebhäuser J
    Phys Chem Chem Phys; 2017 Mar; 19(12):8602-8611. PubMed ID: 28290567
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Lithium insertion in nanostructured TiO(2)(B) architectures.
    Dylla AG; Henkelman G; Stevenson KJ
    Acc Chem Res; 2013 May; 46(5):1104-12. PubMed ID: 23425042
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparison of the rate capability of nanostructured amorphous and anatase TiO2 for lithium insertion using anodic TiO2 nanotube arrays.
    Fang HT; Liu M; Wang DW; Sun T; Guan DS; Li F; Zhou J; Sham TK; Cheng HM
    Nanotechnology; 2009 Jun; 20(22):225701. PubMed ID: 19436089
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Amorphous and crystalline TiO2 nanotube arrays for enhanced Li-ion intercalation properties.
    Guan D; Cai C; Wang Y
    J Nanosci Nanotechnol; 2011 Apr; 11(4):3641-50. PubMed ID: 21776749
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Preferentially Oriented TiO
    Auer A; Portenkirchner E; Götsch T; Valero-Vidal C; Penner S; Kunze-Liebhäuser J
    ACS Appl Mater Interfaces; 2017 Oct; 9(42):36828-36836. PubMed ID: 28972728
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nanostructured Anatase Titania as a Cathode Catalyst for Li-CO
    Pipes R; Bhargav A; Manthiram A
    ACS Appl Mater Interfaces; 2018 Oct; 10(43):37119-37124. PubMed ID: 30299075
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Combination of lightweight elements and nanostructured materials for batteries.
    Chen J; Cheng F
    Acc Chem Res; 2009 Jun; 42(6):713-23. PubMed ID: 19354236
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhancing the energy density of safer Li-ion batteries by combining high-voltage lithium cobalt fluorophosphate cathodes and nanostructured titania anodes.
    Ortiz GF; López MC; Li Y; McDonald MJ; Cabello M; Tirado JL; Yang Y
    Sci Rep; 2016 Feb; 6():20656. PubMed ID: 26879916
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mesoporous anatase TiO2 nanorods as thermally robust anode materials for Li-ion batteries: detailed insight into the formation mechanism.
    Seisenbaeva GA; Nedelec JM; Daniel G; Tiseanu C; Parvulescu V; Pol VG; Abrego L; Kessler VG
    Chemistry; 2013 Dec; 19(51):17439-44. PubMed ID: 24243542
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Improving the performance of titania nanotube battery materials by surface modification with lithium phosphate.
    López MC; Ortiz GF; González JR; Alcántara R; Tirado JL
    ACS Appl Mater Interfaces; 2014 Apr; 6(8):5669-78. PubMed ID: 24720517
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nanocarbon networks for advanced rechargeable lithium batteries.
    Xin S; Guo YG; Wan LJ
    Acc Chem Res; 2012 Oct; 45(10):1759-69. PubMed ID: 22953777
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Facile Synthesis of Ge@TiO
    Nemaga AW; Michel J; Morcrette M; Mallet J
    ACS Appl Mater Interfaces; 2023 Oct; 15(39):45790-45798. PubMed ID: 37726212
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Highly Ordered TiO
    Cao W; Chen K; Xue D
    Materials (Basel); 2021 Jan; 14(3):. PubMed ID: 33494325
    [TBL] [Abstract][Full Text] [Related]  

  • 14. ALD Al
    Sopha H; Salian GD; Zazpe R; Prikryl J; Hromadko L; Djenizian T; Macak JM
    ACS Omega; 2017 Jun; 2(6):2749-2756. PubMed ID: 28691112
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dual-Phase Lithium Metal Anode Containing a Polysulfide-Induced Solid Electrolyte Interphase and Nanostructured Graphene Framework for Lithium-Sulfur Batteries.
    Cheng XB; Peng HJ; Huang JQ; Zhang R; Zhao CZ; Zhang Q
    ACS Nano; 2015 Jun; 9(6):6373-82. PubMed ID: 26042545
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dominant factors governing the rate capability of a TiO2 nanotube anode for high power lithium ion batteries.
    Han H; Song T; Lee EK; Devadoss A; Jeon Y; Ha J; Chung YC; Choi YM; Jung YG; Paik U
    ACS Nano; 2012 Sep; 6(9):8308-15. PubMed ID: 22935008
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Lithiation of Crystalline Silicon As Analyzed by Operando Neutron Reflectivity.
    Seidlhofer BK; Jerliu B; Trapp M; Hüger E; Risse S; Cubitt R; Schmidt H; Steitz R; Ballauff M
    ACS Nano; 2016 Aug; 10(8):7458-66. PubMed ID: 27447734
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structural optimization of 3D porous electrodes for high-rate performance lithium ion batteries.
    Ye J; Baumgaertel AC; Wang YM; Biener J; Biener MM
    ACS Nano; 2015 Feb; 9(2):2194-202. PubMed ID: 25491650
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Titania-carbon nanocomposite anodes for lithium ion batteries--effects of confined growth and phase synergism.
    Petkovich ND; Wilson BE; Rudisill SG; Stein A
    ACS Appl Mater Interfaces; 2014 Oct; 6(20):18215-27. PubMed ID: 25249184
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Equilibria and Rate Phenomena from Atomistic to Mesoscale: Simulation Studies of Magnetite.
    Lininger CN; Brady NW; West AC
    Acc Chem Res; 2018 Mar; 51(3):583-590. PubMed ID: 29498267
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.