These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 28291274)

  • 1. Biosynthetic 4,6-dehydratase gene deletion: isolation of a glucosylated jadomycin natural product provides insight into the substrate specificity of glycosyltransferase JadS.
    Forget SM; Na J; McCormick NE; Jakeman DL
    Org Biomol Chem; 2017 Mar; 15(13):2725-2729. PubMed ID: 28291274
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Engineered jadomycin analogues with altered sugar moieties revealing JadS as a substrate flexible O-glycosyltransferase.
    Li L; Pan G; Zhu X; Fan K; Gao W; Ai G; Ren J; Shi M; Olano C; Salas JA; Yang K
    Appl Microbiol Biotechnol; 2017 Jul; 101(13):5291-5300. PubMed ID: 28429060
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biosynthesis of the dideoxysugar component of jadomycin B: genes in the jad cluster of Streptomyces venezuelae ISP5230 for L-digitoxose assembly and transfer to the angucycline aglycone.
    Wang L; White RL; Vining LC
    Microbiology (Reading); 2002 Apr; 148(Pt 4):1091-1103. PubMed ID: 11932454
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Substrate flexibility of a 2,6-dideoxyglycosyltransferase.
    Jakeman DL; Borissow CN; Graham CL; Timmons SC; Reid TR; Syvitski RT
    Chem Commun (Camb); 2006 Sep; (35):3738-40. PubMed ID: 17047829
    [TBL] [Abstract][Full Text] [Related]  

  • 5. JadX is a Disparate Natural Product Binding Protein.
    Robertson AW; Forget SM; Martinez-Farina CF; McCormick NE; Syvitski RT; Jakeman DL
    J Am Chem Soc; 2016 Feb; 138(7):2200-8. PubMed ID: 26814718
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rational design of an aryl-C-glycoside catalyst from a natural product O-glycosyltransferase.
    Härle J; Günther S; Lauinger B; Weber M; Kammerer B; Zechel DL; Luzhetskyy A; Bechthold A
    Chem Biol; 2011 Apr; 18(4):520-30. PubMed ID: 21513888
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Leloir glycosyltransferases of natural product C-glycosylation: structure, mechanism and specificity.
    Tegl G; Nidetzky B
    Biochem Soc Trans; 2020 Aug; 48(4):1583-1598. PubMed ID: 32657344
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Identification of key residues in the catalytic center JadH involved in binding substrates or catalysis of jadomycin biosynthesis].
    Peng X; Ji J; Zhang X; Fan K; Jin L; Zhang Y; Yang K
    Sheng Wu Gong Cheng Xue Bao; 2012 Aug; 28(8):950-8. PubMed ID: 23185895
    [TBL] [Abstract][Full Text] [Related]  

  • 9. SorF: a glycosyltransferase with promiscuous donor substrate specificity in vitro.
    Kopp M; Rupprath C; Irschik H; Bechthold A; Elling L; Müller R
    Chembiochem; 2007 May; 8(7):813-9. PubMed ID: 17407127
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Glycosyl isomerization based on the biosynthesis of natural-product sugar from microorganism].
    Sun W; Li HF; Chen J; Wang GJ; Yang ZY
    Yao Xue Xue Bao; 2013 Feb; 48(2):179-86. PubMed ID: 23672013
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Functional analyses of oxygenases in jadomycin biosynthesis and identification of JadH as a bifunctional oxygenase/dehydrase.
    Chen YH; Wang CC; Greenwell L; Rix U; Hoffmeister D; Vining LC; Rohr J; Yang KQ
    J Biol Chem; 2005 Jun; 280(23):22508-14. PubMed ID: 15817470
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Unusual sugar biosynthesis and natural product glycodiversification.
    Thibodeaux CJ; Melançon CE; Liu HW
    Nature; 2007 Apr; 446(7139):1008-16. PubMed ID: 17460661
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Expanding the promiscuity of a natural-product glycosyltransferase by directed evolution.
    Williams GJ; Zhang C; Thorson JS
    Nat Chem Biol; 2007 Oct; 3(10):657-62. PubMed ID: 17828251
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chapter 12. The power of glycosyltransferases to generate bioactive natural compounds.
    Härle J; Bechthold A
    Methods Enzymol; 2009; 458():309-33. PubMed ID: 19374988
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The impact of enzyme engineering upon natural product glycodiversification.
    Williams GJ; Gantt RW; Thorson JS
    Curr Opin Chem Biol; 2008 Oct; 12(5):556-64. PubMed ID: 18678278
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Natural product disaccharide engineering through tandem glycosyltransferase catalysis reversibility and neoglycosylation.
    Peltier-Pain P; Marchillo K; Zhou M; Andes DR; Thorson JS
    Org Lett; 2012 Oct; 14(19):5086-9. PubMed ID: 22984807
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Assessing acceptor substrate promiscuity of YjiC-mediated glycosylation toward flavonoids.
    Pandey RP; Gurung RB; Parajuli P; Koirala N; Tuoi le T; Sohng JK
    Carbohydr Res; 2014 Jul; 393():26-31. PubMed ID: 24893262
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The structural biology of enzymes involved in natural product glycosylation.
    Singh S; Phillips GN; Thorson JS
    Nat Prod Rep; 2012 Oct; 29(10):1201-37. PubMed ID: 22688446
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification and functional analysis of dTDP-glucose-4,6-dehydratase gene and its linked gene cluster in an aminoglycoside antibiotics producer of Streptomyces tenebrarius H6.
    Du Y; Li T; Wang YG; Xia H
    Curr Microbiol; 2004 Aug; 49(2):99-107. PubMed ID: 15297914
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Natural-product sugar biosynthesis and enzymatic glycodiversification.
    Thibodeaux CJ; Melançon CE; Liu HW
    Angew Chem Int Ed Engl; 2008; 47(51):9814-59. PubMed ID: 19058170
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.