BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

232 related articles for article (PubMed ID: 28291544)

  • 1. Comparison of phytoremediation potential capacity of Spartina densiflora and Sarcocornia perennis for metal polluted soils.
    Idaszkin YL; Lancelotti JL; Pollicelli MP; Marcovecchio JE; Bouza PJ
    Mar Pollut Bull; 2017 May; 118(1-2):297-306. PubMed ID: 28291544
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Accumulation and distribution of trace metals within soils and the austral cordgrass Spartina densiflora in a Patagonian salt marsh.
    Idaszkin YL; Lancelotti JL; Bouza PJ; Marcovecchio JE
    Mar Pollut Bull; 2015 Dec; 101(1):457-465. PubMed ID: 26481413
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Trace metal concentrations in Spartina densiflora and associated soil from a Patagonian salt marsh.
    Idaszkin YL; Bouza PJ; Marinho CH; Gil MN
    Mar Pollut Bull; 2014 Dec; 89(1-2):444-450. PubMed ID: 25457812
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparison of germination, growth, photosynthetic responses and metal uptake between three populations of Spartina densiflora under different soil pollution conditions.
    Mateos-Naranjo E; Andrades-Moreno L; Redondo-Gómez S
    Ecotoxicol Environ Saf; 2011 Oct; 74(7):2040-9. PubMed ID: 21762986
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hazardous metal pollution in a protected coastal area from Northern Patagonia (Argentina).
    Marinho CH; Giarratano E; Esteves JL; Narvarte MA; Gil MN
    Environ Sci Pollut Res Int; 2017 Mar; 24(7):6724-6735. PubMed ID: 28091989
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phytoremediation potential of Miscanthus × giganteus and Spartina pectinata in soil contaminated with heavy metals.
    Korzeniowska J; Stanislawska-Glubiak E
    Environ Sci Pollut Res Int; 2015 Aug; 22(15):11648-57. PubMed ID: 25850746
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Soil phenanthrene phytoremediation capacity in bacteria-assisted Spartina densiflora.
    Mesa-Marín J; Barcia-Piedras JM; Mateos-Naranjo E; Cox L; Real M; Pérez-Romero JA; Navarro-Torre S; Rodríguez-Llorente ID; Pajuelo E; Parra R; Redondo-Gómez S
    Ecotoxicol Environ Saf; 2019 Oct; 182():109382. PubMed ID: 31255867
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modulation of Spartina densiflora plant growth and metal accumulation upon selective inoculation treatments: A comparison of gram negative and gram positive rhizobacteria.
    Paredes-Páliz KI; Mateos-Naranjo E; Doukkali B; Caviedes MA; Redondo-Gómez S; Rodríguez-Llorente ID; Pajuelo E
    Mar Pollut Bull; 2017 Dec; 125(1-2):77-85. PubMed ID: 28797542
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Can liming change root anatomy, biomass allocation and trace element distribution among plant parts of Salix × smithiana in trace element-polluted soils?
    Vondráčková S; Tlustoš P; Száková J
    Environ Sci Pollut Res Int; 2017 Aug; 24(23):19201-19210. PubMed ID: 28664494
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phytoremediation: Environmentally sustainable way for reclamation of heavy metal polluted soils.
    Ashraf S; Ali Q; Zahir ZA; Ashraf S; Asghar HN
    Ecotoxicol Environ Saf; 2019 Jun; 174():714-727. PubMed ID: 30878808
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Heavy metal bioaccumulation by Miscanthus sacchariflorus and its potential for removing metals from the Dongting Lake wetlands, China.
    Yao X; Niu Y; Li Y; Zou D; Ding X; Bian H
    Environ Sci Pollut Res Int; 2018 Jul; 25(20):20003-20011. PubMed ID: 29744779
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Halophytes--an emerging trend in phytoremediation.
    Manousaki E; Kalogerakis N
    Int J Phytoremediation; 2011; 13(10):959-69. PubMed ID: 21972564
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phytoextraction and phytostabilization potential of plants grown in the vicinity of heavy metal-contaminated soils: a case study at an industrial town site.
    Lorestani B; Yousefi N; Cheraghi M; Farmany A
    Environ Monit Assess; 2013 Dec; 185(12):10217-23. PubMed ID: 23856813
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Radionuclides transfer into halophytes growing in tidal salt marshes from the Southwest of Spain.
    Luque CJ; Vaca F; García-Trapote A; Hierro A; Bolívar JP; Castellanos EM
    J Environ Radioact; 2015 Dec; 150():179-88. PubMed ID: 26334596
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluation of the potential of Erodium glaucophyllum L. for phytoremediation of metal-polluted arid soils.
    Jeddi K; Chaieb M
    Environ Sci Pollut Res Int; 2018 Dec; 25(36):36636-36644. PubMed ID: 30377962
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phytoremediation potential of weeds in heavy metal contaminated soils of the Bassa Industrial Zone of Douala, Cameroon.
    Lum AF; Ngwa ES; Chikoye D; Suh CE
    Int J Phytoremediation; 2014; 16(3):302-19. PubMed ID: 24912226
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Impact of compost on metals phytostabilization potential of two halophytes species.
    Eissa MA
    Int J Phytoremediation; 2015; 17(7):662-8. PubMed ID: 25191928
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Stock and losses of trace metals from salt marsh plants.
    Caçador I; Caetano M; Duarte B; Vale C
    Mar Environ Res; 2009 Mar; 67(2):75-82. PubMed ID: 19110308
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Behavior of native species Arrhenatherum elatius (Poaceae) and Sonchus transcaspicus (Asteraceae) exposed to a heavy metal-polluted field: plant metal concentration, phytotoxicity, and detoxification responses.
    Lu Y; Li X; He M; Zeng F
    Int J Phytoremediation; 2013; 15(10):924-37. PubMed ID: 23819286
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enrichment of marsh soils with heavy metals by effect of anthropic pollution.
    Vega FA; Covelo EF; Cerqueira B; Andrade ML
    J Hazard Mater; 2009 Oct; 170(2-3):1056-63. PubMed ID: 19525065
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.