These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

397 related articles for article (PubMed ID: 28291707)

  • 21. DNA methylation processes in atheosclerotic plaque.
    Aavik E; Babu M; Ylä-Herttuala S
    Atherosclerosis; 2019 Feb; 281():168-179. PubMed ID: 30591183
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Nuclear Factor-κB Activation as a Pathological Mechanism of Lipid Metabolism and Atherosclerosis.
    Yu XH; Zheng XL; Tang CK
    Adv Clin Chem; 2015; 70():1-30. PubMed ID: 26231484
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The Epigenome in Atherosclerosis.
    Costantino S; Paneni F
    Handb Exp Pharmacol; 2022; 270():511-535. PubMed ID: 33474673
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Nuclear lncRNAs as epigenetic regulators-beyond skepticism.
    Nakagawa S; Kageyama Y
    Biochim Biophys Acta; 2014 Mar; 1839(3):215-22. PubMed ID: 24200874
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Long noncoding RNA, the methylation of genomic elements and their emerging crosstalk in hepatocellular carcinoma.
    Yuan SX; Zhang J; Xu QG; Yang Y; Zhou WP
    Cancer Lett; 2016 Sep; 379(2):239-44. PubMed ID: 26282784
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Interplay between epigenetic mechanisms and transcription factors in atherosclerosis.
    Aziz M; Jandeleit-Dahm KA; Khan AW
    Atherosclerosis; 2024 Aug; 395():117615. PubMed ID: 38917706
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Progress in epigenetic histone modification analysis by mass spectrometry for clinical investigations.
    Önder Ö; Sidoli S; Carroll M; Garcia BA
    Expert Rev Proteomics; 2015; 12(5):499-517. PubMed ID: 26400466
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Flow-Dependent Epigenetic DNA Methylation in Endothelial Gene Expression and Atherosclerosis.
    Dunn J; Thabet S; Jo H
    Arterioscler Thromb Vasc Biol; 2015 Jul; 35(7):1562-9. PubMed ID: 25953647
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Epigenetic pathways in macrophages emerge as novel targets in atherosclerosis.
    Neele AE; Van den Bossche J; Hoeksema MA; de Winther MP
    Eur J Pharmacol; 2015 Sep; 763(Pt A):79-89. PubMed ID: 26004034
    [TBL] [Abstract][Full Text] [Related]  

  • 30. RNAs - physical and functional modulators of chromatin reader proteins.
    Hiragami-Hamada K; Fischle W
    Biochim Biophys Acta; 2014 Aug; 1839(8):737-42. PubMed ID: 24704208
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Uncovering epigenetic landscape: a new path for biomarkers identification and drug development.
    de Oliveira DT; Guerra-Sá R
    Mol Biol Rep; 2020 Nov; 47(11):9097-9122. PubMed ID: 33089404
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Recent developments in epigenetics of acute and chronic kidney diseases.
    Reddy MA; Natarajan R
    Kidney Int; 2015 Aug; 88(2):250-61. PubMed ID: 25993323
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The Key Role of DNA Methylation and Histone Acetylation in Epigenetics of Atherosclerosis.
    Lee HT; Oh S; Ro DH; Yoo H; Kwon YW
    J Lipid Atheroscler; 2020 Sep; 9(3):419-434. PubMed ID: 33024734
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Interplay between different epigenetic modifications and mechanisms.
    Murr R
    Adv Genet; 2010; 70():101-41. PubMed ID: 20920747
    [TBL] [Abstract][Full Text] [Related]  

  • 35. [Epigenetics of schizophrenia: a review].
    Rivollier F; Lotersztajn L; Chaumette B; Krebs MO; Kebir O
    Encephale; 2014 Oct; 40(5):380-6. PubMed ID: 25127897
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Cell-specific epigenetic changes in atherosclerosis.
    Khan AW; Paneni F; Jandeleit-Dahm KAM
    Clin Sci (Lond); 2021 May; 135(9):1165-1187. PubMed ID: 33988232
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Epigenetics in atherosclerosis: a clinical perspective.
    Zhang BK; Lai X; Jia SJ
    Discov Med; 2015 Feb; 19(103):73-80. PubMed ID: 25725221
    [TBL] [Abstract][Full Text] [Related]  

  • 38. RP5-833A20.1/miR-382-5p/NFIA-dependent signal transduction pathway contributes to the regulation of cholesterol homeostasis and inflammatory reaction.
    Hu YW; Zhao JY; Li SF; Huang JL; Qiu YR; Ma X; Wu SG; Chen ZP; Hu YR; Yang JY; Wang YC; Gao JJ; Sha YH; Zheng L; Wang Q
    Arterioscler Thromb Vasc Biol; 2015 Jan; 35(1):87-101. PubMed ID: 25265644
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The contribution of mass spectrometry-based proteomics to understanding epigenetics.
    Noberini R; Sigismondo G; Bonaldi T
    Epigenomics; 2016 Mar; 8(3):429-45. PubMed ID: 26606673
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Emerging topic: flow-related epigenetic regulation of endothelial phenotype through DNA methylation.
    Davies PF; Manduchi E; Stoeckert CJ; Jiménez JM; Jiang YZ
    Vascul Pharmacol; 2014 Aug; 62(2):88-93. PubMed ID: 24874278
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 20.