These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

376 related articles for article (PubMed ID: 28291787)

  • 21. Method to reconstruct neuronal action potential train from two-photon calcium imaging.
    Quan T; Liu X; Lv X; Chen WR; Zeng S
    J Biomed Opt; 2010; 15(6):066002. PubMed ID: 21198176
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A generalised method to estimate the kinetics of fast Ca(2+) currents from Ca(2+) imaging experiments.
    Ait Ouares K; Jaafari N; Canepari M
    J Neurosci Methods; 2016 Aug; 268():66-77. PubMed ID: 27163479
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A fast multilevel algorithm for wavelet-regularized image restoration.
    Vonesch C; Unser M
    IEEE Trans Image Process; 2009 Mar; 18(3):509-23. PubMed ID: 19188124
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Reconstruction algorithm for fluorescence molecular tomography using sorted L-one penalized estimation.
    He X; Dong F; Yu J; Guo H; Hou Y
    J Opt Soc Am A Opt Image Sci Vis; 2015 Nov; 32(11):1928-35. PubMed ID: 26560906
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Video rate volumetric Ca
    Nöbauer T; Skocek O; Pernía-Andrade AJ; Weilguny L; Traub FM; Molodtsov MI; Vaziri A
    Nat Methods; 2017 Aug; 14(8):811-818. PubMed ID: 28650477
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Empirical Bayesian significance measure of neuronal spike response.
    Oba S; Nakae K; Ikegaya Y; Aki S; Yoshimoto J; Ishii S
    BMC Neurosci; 2016 May; 17(1):27. PubMed ID: 27209433
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Simultaneous whole-animal 3D imaging of neuronal activity using light-field microscopy.
    Prevedel R; Yoon YG; Hoffmann M; Pak N; Wetzstein G; Kato S; Schrödel T; Raskar R; Zimmer M; Boyden ES; Vaziri A
    Nat Methods; 2014 Jul; 11(7):727-730. PubMed ID: 24836920
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Connectivity inference from neural recording data: Challenges, mathematical bases and research directions.
    Magrans de Abril I; Yoshimoto J; Doya K
    Neural Netw; 2018 Jun; 102():120-137. PubMed ID: 29571122
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A new approach to the detection and statistical classification of Ca2+ sparks.
    Bányász T; Chen-Izu Y; Balke CW; Izu LT
    Biophys J; 2007 Jun; 92(12):4458-65. PubMed ID: 17400702
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Engineering genetically encoded fluorescent indicators for imaging of neuronal activity: Progress and prospects.
    Shen Y; Nasu Y; Shkolnikov I; Kim A; Campbell RE
    Neurosci Res; 2020 Mar; 152():3-14. PubMed ID: 31991206
    [TBL] [Abstract][Full Text] [Related]  

  • 31. In vivo one-photon confocal calcium imaging of neuronal activity from the mouse neocortex.
    Iwasaki S; Ikegaya Y
    J Integr Neurosci; 2018; 17(3-4):671-678. PubMed ID: 30103345
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Estimation of neuronal activity based on voltage-sensitive dye imaging in a moving preparation.
    Fathiazar E; Kretzberg J
    Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():6285-8. PubMed ID: 26737729
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Inferring Neuronal Dynamics from Calcium Imaging Data Using Biophysical Models and Bayesian Inference.
    Rahmati V; Kirmse K; Marković D; Holthoff K; Kiebel SJ
    PLoS Comput Biol; 2016 Feb; 12(2):e1004736. PubMed ID: 26894748
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Weighted depth compensation algorithm for fluorescence molecular tomography reconstruction.
    Liu F; Li M; Zhang B; Luo J; Bai J
    Appl Opt; 2012 Dec; 51(36):8883-92. PubMed ID: 23262629
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Optical detection of neuron connectivity by random access two-photon microscopy.
    Shafeghat N; Heidarinejad M; Murata N; Nakamura H; Inoue T
    J Neurosci Methods; 2016 Apr; 263():48-56. PubMed ID: 26851307
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Fast XYT imaging of elementary calcium release events in muscle with multifocal multiphoton microscopy and wavelet denoising and detection.
    Von Wegner F; Both M; Fink RH; Friedrich O
    IEEE Trans Med Imaging; 2007 Jul; 26(7):925-34. PubMed ID: 17649906
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Regression-based identification of behavior-encoding neurons during large-scale optical imaging of neural activity at cellular resolution.
    Miri A; Daie K; Burdine RD; Aksay E; Tank DW
    J Neurophysiol; 2011 Feb; 105(2):964-80. PubMed ID: 21084686
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Deconvolution of confocal images of dihydropyridine and ryanodine receptors in developing cardiomyocytes.
    Sedarat F; Lin E; Moore ED; Tibbits GF
    J Appl Physiol (1985); 2004 Sep; 97(3):1098-103. PubMed ID: 15064297
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Spatially Structured Sparse Morphological Component Separation for voltage-sensitive dye optical imaging.
    Raguet H; Monier C; Foubert L; Ferezou I; Fregnac Y; Peyré G
    J Neurosci Methods; 2016 Jan; 257():76-96. PubMed ID: 26434707
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Two-hierarchical nonnegative matrix factorization distinguishing the fluorescent targets from autofluorescence for fluorescence imaging.
    Huang S; Zhao Y; Qin B
    Biomed Eng Online; 2015 Dec; 14():116. PubMed ID: 26667020
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 19.