These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

291 related articles for article (PubMed ID: 28291962)

  • 1. Matching the Statistical Model to the Research Question for Dental Caries Indices with Many Zero Counts.
    Preisser JS; Long DL; Stamm JW
    Caries Res; 2017; 51(3):198-208. PubMed ID: 28291962
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Overall Effects of Risk Factors Associated with Dental Caries Indices Using the Marginalized Zero-Inflated Negative Binomial Model.
    Bakhshi E; Yazdanipour MA; Rahgozar M; Ghorbani Z; Deghatipour M
    Caries Res; 2019; 53(5):541-546. PubMed ID: 31117078
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Review and recommendations for zero-inflated count regression modeling of dental caries indices in epidemiological studies.
    Preisser JS; Stamm JW; Long DL; Kincade ME
    Caries Res; 2012; 46(4):413-23. PubMed ID: 22710271
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Marginalized zero-inflated negative binomial regression with application to dental caries.
    Preisser JS; Das K; Long DL; Divaris K
    Stat Med; 2016 May; 35(10):1722-35. PubMed ID: 26568034
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modelling count data with excessive zeros: the need for class prediction in zero-inflated models and the issue of data generation in choosing between zero-inflated and generic mixture models for dental caries data.
    Gilthorpe MS; Frydenberg M; Cheng Y; Baelum V
    Stat Med; 2009 Dec; 28(28):3539-53. PubMed ID: 19902494
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The utility of the zero-inflated Poisson and zero-inflated negative binomial models: a case study of cross-sectional and longitudinal DMF data examining the effect of socio-economic status.
    Lewsey JD; Thomson WM
    Community Dent Oral Epidemiol; 2004 Jun; 32(3):183-9. PubMed ID: 15151688
    [TBL] [Abstract][Full Text] [Related]  

  • 7. What statistical method should be used to evaluate risk factors associated with dmfs index? Evidence from the National Pathfinder Survey of 4-year-old Italian children.
    Solinas G; Campus G; Maida C; Sotgiu G; Cagetti MG; Lesaffre E; Castiglia P
    Community Dent Oral Epidemiol; 2009 Dec; 37(6):539-46. PubMed ID: 19845715
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Marginalized zero-inflated Poisson models with missing covariates.
    Benecha HK; Preisser JS; Divaris K; Herring AH; Das K
    Biom J; 2018 Jul; 60(4):845-858. PubMed ID: 29748991
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Marginalized multilevel hurdle and zero-inflated models for overdispersed and correlated count data with excess zeros.
    Kassahun W; Neyens T; Molenberghs G; Faes C; Verbeke G
    Stat Med; 2014 Nov; 33(25):4402-19. PubMed ID: 24957791
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modeling Caries Experience: Advantages of the Use of the Hurdle Model.
    Hofstetter H; Dusseldorp E; Zeileis A; Schuller AA
    Caries Res; 2016; 50(6):517-526. PubMed ID: 27639918
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Discrete Distribution Based on Compound Sum to Model Dental Caries Count Data.
    Vergnes JN; Boucher JP; Lelong N; Sixou M; Nabet C
    Caries Res; 2017; 51(1):68-78. PubMed ID: 28006773
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Marginalized mixture models for count data from multiple source populations.
    Benecha HK; Neelon B; Divaris K; Preisser JS
    J Stat Distrib Appl; 2017; 4(1):3. PubMed ID: 28446995
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The zero-inflated negative binomial regression model with correction for misclassification: an example in caries research.
    Mwalili SM; Lesaffre E; Declerck D
    Stat Methods Med Res; 2008 Apr; 17(2):123-39. PubMed ID: 17698937
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Logistic regression for dichotomized counts.
    Preisser JS; Das K; Benecha H; Stamm JW
    Stat Methods Med Res; 2016 Dec; 25(6):3038-3056. PubMed ID: 24862513
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A bivariate zero-inflated negative binomial model and its applications to biomedical settings.
    Cho H; Liu C; Preisser JS; Wu D
    Stat Methods Med Res; 2023 Jul; 32(7):1300-1317. PubMed ID: 37167422
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparison of linear and zero-inflated negative binomial regression models for appraisal of risk factors associated with dental caries.
    Batra M; Shah AF; Rajput P; Shah IA
    J Indian Soc Pedod Prev Dent; 2016; 34(1):71-5. PubMed ID: 26838152
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Using zero inflated models to analyze dental caries with many zeroes.
    Javali SB; Pandit PV
    Indian J Dent Res; 2010; 21(4):480-5. PubMed ID: 21187609
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Italian deprivation index and dental caries in 12-year-old children: a multilevel Bayesian analysis.
    Matranga D; Campus G; Castiglia P; Strohmenger L; Solinas G
    Caries Res; 2014; 48(6):584-93. PubMed ID: 25073937
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Can Bayesian models play a role in dental caries epidemiology? Evidence from an application to the BELCAP data set.
    Matranga D; Firenze A; Vullo A
    Community Dent Oral Epidemiol; 2013 Oct; 41(5):473-80. PubMed ID: 25098917
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Marginal mean models for zero-inflated count data.
    Todem D; Kim K; Hsu WW
    Biometrics; 2016 Sep; 72(3):986-94. PubMed ID: 26890497
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.