These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 28292241)

  • 61. Bacillus thuringiensis endotoxin production: a systematic review of the past 10 years.
    Duarte Neto JMW; Wanderley MCA; da Silva TAF; Marques DAV; da Silva GR; Gurgel JF; Oliveira JP; Porto ALF
    World J Microbiol Biotechnol; 2020 Jul; 36(9):128. PubMed ID: 32712871
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Growth variation among Bacillus thuringiensis strains can affect screening procedures for supernatant-secreted toxins against insect pests.
    Argôlo Filho RC; Gomes RA; Barreto MR; de P Lana U; Valicente FH; Loguercio LL
    Pest Manag Sci; 2011 Sep; 67(9):1184-92. PubMed ID: 21618404
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Interactions between Entomopathogenic Fungi and Insects and Prospects with Glycans.
    Liu D; Smagghe G; Liu TX
    J Fungi (Basel); 2023 May; 9(5):. PubMed ID: 37233286
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Entomopathogenic Viruses in the Neotropics: Current Status and Recently Discovered Species.
    Sosa-Gómez DR; Morgado FS; Corrêa RFT; Silva LA; Ardisson-Araújo DMP; Rodrigues BMP; Oliveira EE; Aguiar RWS; Ribeiro BM
    Neotrop Entomol; 2020 Jun; 49(3):315-331. PubMed ID: 32358711
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Mode of Action and Specificity of Bacillus thuringiensis Toxins in the Control of Caterpillars and Stink Bugs in Soybean Culture.
    Schünemann R; Knaak N; Fiuza LM
    ISRN Microbiol; 2014; 2014():135675. PubMed ID: 24575310
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Microbial control of phytophagous invertebrate pests in South Africa: Current status and future prospects.
    Hatting JL; Moore SD; Malan AP
    J Invertebr Pathol; 2019 Jul; 165():54-66. PubMed ID: 29427636
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Bacteriological larvicides of dipteran disease vectors.
    Regis L; Silva-Filha MH; Nielsen-LeRoux C; Charles JF
    Trends Parasitol; 2001 Aug; 17(8):377-80. PubMed ID: 11685898
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Microbiota in insect fungal pathology.
    Boucias DG; Zhou Y; Huang S; Keyhani NO
    Appl Microbiol Biotechnol; 2018 Jul; 102(14):5873-5888. PubMed ID: 29802479
    [TBL] [Abstract][Full Text] [Related]  

  • 69. On-farm Production of Microbial Entomopathogens for use in Agriculture: Brazil as a Case Study.
    Faria M; Mascarin GM; Butt T; Lopes RB
    Neotrop Entomol; 2023 Apr; 52(2):122-133. PubMed ID: 37014592
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Insect Pathogenic Bacteria in Integrated Pest Management.
    Ruiu L
    Insects; 2015 Apr; 6(2):352-67. PubMed ID: 26463190
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Promise for plant pest control: root-associated pseudomonads with insecticidal activities.
    Kupferschmied P; Maurhofer M; Keel C
    Front Plant Sci; 2013; 4():287. PubMed ID: 23914197
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Biopesticide production from Bacillus thuringiensis: an environmentally friendly alternative.
    Rosas-García NM
    Recent Pat Biotechnol; 2009; 3(1):28-36. PubMed ID: 19149720
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Rethinking biorational insecticides for pest management: unintended effects and consequences.
    Haddi K; Turchen LM; Viteri Jumbo LO; Guedes RN; Pereira EJ; Aguiar RW; Oliveira EE
    Pest Manag Sci; 2020 Jul; 76(7):2286-2293. PubMed ID: 32237033
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Microbial insecticides in Iran: History, current status, challenges and perspective.
    Karimi J; Dara SK; Arthurs S
    J Invertebr Pathol; 2019 Jul; 165():67-73. PubMed ID: 29476767
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Silica Nanoparticles for Insect Pest Control.
    Cáceres M; Vassena CV; Garcerá MD; Santo-Orihuela PL
    Curr Pharm Des; 2019; 25(37):4030-4038. PubMed ID: 31613723
    [TBL] [Abstract][Full Text] [Related]  

  • 76. The combined effects of microbial insecticides and sodium chloride on the development and emergence of Chironomus xanthus.
    Dornelas ASP; Pestana JLT; de Souza Saraiva A; Barbosa RS; Cavallini GS; Gravato C; da Maia Soares AMV; Sarmento RA
    Pest Manag Sci; 2023 Jun; 79(6):2255-2263. PubMed ID: 36775861
    [TBL] [Abstract][Full Text] [Related]  

  • 77. A New Cypovirus-1 Strain as a Promising Agent for Lepidopteran Pest Control.
    Martemyanov VV; Akhanaev YB; Belousova IA; Pavlusin SV; Yakimova ME; Kharlamova DD; Ageev AA; Golovina AN; Astapenko SA; Kolosov AV; Ananko GG; Taranov OS; Shvalov AN; Bodnev SA; Ershov NI; Grushevaya IV; Timofeyev MA; Tokarev YS
    Microbiol Spectr; 2023 Jun; 11(3):e0385522. PubMed ID: 37154690
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Genetically modified entomopathogenic bacteria, recent developments, benefits and impacts: A review.
    Azizoglu U; Jouzani GS; Yilmaz N; Baz E; Ozkok D
    Sci Total Environ; 2020 Sep; 734():139169. PubMed ID: 32460068
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Non-Entomopathogenic Roles of Entomopathogenic Fungi in Promoting Plant Health and Growth.
    Dara SK
    Insects; 2019 Sep; 10(9):. PubMed ID: 31480565
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Genetically Engineering Entomopathogenic Fungi.
    Zhao H; Lovett B; Fang W
    Adv Genet; 2016; 94():137-63. PubMed ID: 27131325
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.