These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
212 related articles for article (PubMed ID: 28292562)
1. A quantitative analysis of multilineage-differentiating stress-enduring (Muse) cells in human adipose tissue and efficacy of melanocytes induction. Yamauchi T; Yamasaki K; Tsuchiyama K; Koike S; Aiba S J Dermatol Sci; 2017 Jun; 86(3):198-205. PubMed ID: 28292562 [TBL] [Abstract][Full Text] [Related]
2. Functional melanocytes are readily reprogrammable from multilineage-differentiating stress-enduring (muse) cells, distinct stem cells in human fibroblasts. Tsuchiyama K; Wakao S; Kuroda Y; Ogura F; Nojima M; Sawaya N; Yamasaki K; Aiba S; Dezawa M J Invest Dermatol; 2013 Oct; 133(10):2425-2435. PubMed ID: 23563197 [TBL] [Abstract][Full Text] [Related]
3. Artificial Pigmented Human Skin Created by Muse Cells. Yamauchi T; Yamasaki K; Tsuchiyama K; Aiba S Adv Exp Med Biol; 2018; 1103():255-271. PubMed ID: 30484234 [TBL] [Abstract][Full Text] [Related]
4. Human adipose tissue possesses a unique population of pluripotent stem cells with nontumorigenic and low telomerase activities: potential implications in regenerative medicine. Ogura F; Wakao S; Kuroda Y; Tsuchiyama K; Bagheri M; Heneidi S; Chazenbalk G; Aiba S; Dezawa M Stem Cells Dev; 2014 Apr; 23(7):717-28. PubMed ID: 24256547 [TBL] [Abstract][Full Text] [Related]
5. Muse Cells Derived from Dermal Tissues Can Differentiate into Melanocytes. Tian T; Zhang RZ; Yang YH; Liu Q; Li D; Pan XR Cell Reprogram; 2017 Apr; 19(2):116-122. PubMed ID: 28170296 [TBL] [Abstract][Full Text] [Related]
6. Adipose tissue-derived Muse cells promote autophagy and oxidative stress tolerance in human epidermal melanocytes. Wang S; Wang P; Zhang R Cell Tissue Bank; 2023 Mar; 24(1):253-264. PubMed ID: 35986799 [TBL] [Abstract][Full Text] [Related]
7. Muse Cells Provide the Pluripotency of Mesenchymal Stem Cells: Direct Contribution of Muse Cells to Tissue Regeneration. Dezawa M Cell Transplant; 2016; 25(5):849-61. PubMed ID: 26884346 [TBL] [Abstract][Full Text] [Related]
8. The roles of Frizzled-3 and Wnt3a on melanocyte development: in vitro studies on neural crest cells and melanocyte precursor cell lines. Chang CH; Tsai RK; Tsai MH; Lin YH; Hirobe T J Dermatol Sci; 2014 Aug; 75(2):100-8. PubMed ID: 24815018 [TBL] [Abstract][Full Text] [Related]
9. Excess tyrosine rescues the reduced activity of proliferation and differentiation of cultured recessive yellow melanocytes derived from neonatal mouse epidermis. Hirobe T; Abe H; Wakamatsu K; Ito S; Kawa Y; Soma Y; Mizoguchi M Eur J Cell Biol; 2007 Jun; 86(6):315-30. PubMed ID: 17532540 [TBL] [Abstract][Full Text] [Related]
11. Muse cells, newly found non-tumorigenic pluripotent stem cells, reside in human mesenchymal tissues. Wakao S; Akashi H; Kushida Y; Dezawa M Pathol Int; 2014 Jan; 64(1):1-9. PubMed ID: 24471964 [TBL] [Abstract][Full Text] [Related]
12. Uveal melanocytes do not respond to or express receptors for alpha-melanocyte-stimulating hormone. Li L; Hu DN; Zhao H; McCormick SA; Nordlund JJ; Boissy RE Invest Ophthalmol Vis Sci; 2006 Oct; 47(10):4507-12. PubMed ID: 17003446 [TBL] [Abstract][Full Text] [Related]
13. Mobilization of Pluripotent Multilineage-Differentiating Stress-Enduring Cells in Ischemic Stroke. Hori E; Hayakawa Y; Hayashi T; Hori S; Okamoto S; Shibata T; Kubo M; Horie Y; Sasahara M; Kuroda S J Stroke Cerebrovasc Dis; 2016 Jun; 25(6):1473-81. PubMed ID: 27019988 [TBL] [Abstract][Full Text] [Related]
14. Awakened by cellular stress: isolation and characterization of a novel population of pluripotent stem cells derived from human adipose tissue. Heneidi S; Simerman AA; Keller E; Singh P; Li X; Dumesic DA; Chazenbalk G PLoS One; 2013; 8(6):e64752. PubMed ID: 23755141 [TBL] [Abstract][Full Text] [Related]
15. Nitric oxide enhances the sensitivity of alpaca melanocytes to respond to alpha-melanocyte-stimulating hormone by up-regulating melanocortin-1 receptor. Dong Y; Cao J; Wang H; Zhang J; Zhu Z; Bai R; Hao H; He X; Fan R; Dong C Biochem Biophys Res Commun; 2010 Jun; 396(4):849-53. PubMed ID: 20451493 [TBL] [Abstract][Full Text] [Related]
16. Neurotrophic Factor Secretion and Neural Differentiation Potential of Multilineage-differentiating Stress-enduring (Muse) Cells Derived from Mouse Adipose Tissue. Nitobe Y; Nagaoki T; Kumagai G; Sasaki A; Liu X; Fujita T; Fukutoku T; Wada K; Tanaka T; Kudo H; Asari T; Furukawa KI; Ishibashi Y Cell Transplant; 2019; 28(9-10):1132-1139. PubMed ID: 31304790 [TBL] [Abstract][Full Text] [Related]
17. The Muse Cell Discovery, Thanks to Wine and Science. Dezawa M Adv Exp Med Biol; 2018; 1103():1-11. PubMed ID: 30484221 [TBL] [Abstract][Full Text] [Related]
19. The secretome of MUSE cells contains factors that may play a role in regulation of stemness, apoptosis and immunomodulation. Alessio N; Özcan S; Tatsumi K; Murat A; Peluso G; Dezawa M; Galderisi U Cell Cycle; 2017 Jan; 16(1):33-44. PubMed ID: 27463232 [TBL] [Abstract][Full Text] [Related]
20. In vitro differentiation of human multilineage differentiating stress-enduring (Muse) cells into insulin producing cells. Fouad AM; Gabr MM; Abdelhady EK; Zakaria MM; Khater SM; Ismail AM; Refaie AF J Genet Eng Biotechnol; 2018 Dec; 16(2):433-440. PubMed ID: 30733757 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]