These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

311 related articles for article (PubMed ID: 28292901)

  • 1. Bacterial proteostasis balances energy and chaperone utilization efficiently.
    Santra M; Farrell DW; Dill KA
    Proc Natl Acad Sci U S A; 2017 Mar; 114(13):E2654-E2661. PubMed ID: 28292901
    [TBL] [Abstract][Full Text] [Related]  

  • 2. How Do Chaperones Protect a Cell's Proteins from Oxidative Damage?
    Santra M; Dill KA; de Graff AMR
    Cell Syst; 2018 Jun; 6(6):743-751.e3. PubMed ID: 29886110
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular chaperone functions in protein folding and proteostasis.
    Kim YE; Hipp MS; Bracher A; Hayer-Hartl M; Hartl FU
    Annu Rev Biochem; 2013; 82():323-55. PubMed ID: 23746257
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Proteostasis is adaptive: Balancing chaperone holdases against foldases.
    de Graff AM; Mosedale DE; Sharp T; Dill KA; Grainger DJ
    PLoS Comput Biol; 2020 Dec; 16(12):e1008460. PubMed ID: 33315891
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantifying chaperone-mediated transitions in the proteostasis network of E. coli.
    Dickson A; Brooks CL
    PLoS Comput Biol; 2013; 9(11):e1003324. PubMed ID: 24244134
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Targeting DNA topoisomerases or checkpoint kinases results in an overload of chaperone systems, triggering aggregation of a metastable subproteome.
    Huiting W; Dekker SL; van der Lienden JCJ; Mergener R; Musskopf MK; Furtado GV; Gerrits E; Coit D; Oghbaie M; Di Stefano LH; Schepers H; van Waarde-Verhagen MAWH; Couzijn S; Barazzuol L; LaCava J; Kampinga HH; Bergink S
    Elife; 2022 Feb; 11():. PubMed ID: 35200138
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cumulative impact of chaperone-mediated folding on genome evolution.
    Bogumil D; Dagan T
    Biochemistry; 2012 Dec; 51(50):9941-53. PubMed ID: 23167595
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Inclusion body anatomy and functioning of chaperone-mediated in vivo inclusion body disassembly during high-level recombinant protein production in Escherichia coli.
    Rinas U; Hoffmann F; Betiku E; Estapé D; Marten S
    J Biotechnol; 2007 Jan; 127(2):244-57. PubMed ID: 16945443
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Proteome Folding Problem and Cellular Proteostasis.
    Powers ET; Gierasch LM
    J Mol Biol; 2021 Oct; 433(20):167197. PubMed ID: 34391802
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Individual and collective contributions of chaperoning and degradation to protein homeostasis in E. coli.
    Cho Y; Zhang X; Pobre KF; Liu Y; Powers DL; Kelly JW; Gierasch LM; Powers ET
    Cell Rep; 2015 Apr; 11(2):321-33. PubMed ID: 25843722
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Model systems of protein-misfolding diseases reveal chaperone modifiers of proteotoxicity.
    Brehme M; Voisine C
    Dis Model Mech; 2016 Aug; 9(8):823-38. PubMed ID: 27491084
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structural basis for the antifolding activity of a molecular chaperone.
    Huang C; Rossi P; Saio T; Kalodimos CG
    Nature; 2016 Sep; 537(7619):202-206. PubMed ID: 27501151
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Immunodominant protein MIP_05962 from Mycobacterium indicus pranii displays chaperone activity.
    Sharma A; Equbal MJ; Pandey S; Sheikh JA; Ehtesham NZ; Hasnain SE; Chaudhuri TK
    FEBS J; 2017 May; 284(9):1338-1354. PubMed ID: 28296245
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Protein-Protein Interactions in the Molecular Chaperone Network.
    Freilich R; Arhar T; Abrams JL; Gestwicki JE
    Acc Chem Res; 2018 Apr; 51(4):940-949. PubMed ID: 29613769
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Physical map and dynamics of the chaperone network in Escherichia coli.
    Kumar M; Sourjik V
    Mol Microbiol; 2012 May; 84(4):736-47. PubMed ID: 22463727
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Chemical Biology of Molecular Chaperones--Implications for Modulation of Proteostasis.
    Brandvold KR; Morimoto RI
    J Mol Biol; 2015 Sep; 427(18):2931-47. PubMed ID: 26003923
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hsp70 chaperone: a master player in protein homeostasis.
    Fernández-Fernández MR; Valpuesta JM
    F1000Res; 2018; 7():. PubMed ID: 30338057
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Forces Driving Chaperone Action.
    Koldewey P; Stull F; Horowitz S; Martin R; Bardwell JCA
    Cell; 2016 Jul; 166(2):369-379. PubMed ID: 27293188
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Substrate Interaction Networks of the Escherichia coli Chaperones: Trigger Factor, DnaK and GroEL.
    Bhandari V; Houry WA
    Adv Exp Med Biol; 2015; 883():271-94. PubMed ID: 26621473
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Conversion of a soluble protein into a potent chaperone in vivo.
    Kwon SB; Ryu K; Son A; Jeong H; Lim KH; Kim KH; Seong BL; Choi SI
    Sci Rep; 2019 Feb; 9(1):2735. PubMed ID: 30804538
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.