BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 28293138)

  • 1. Effective equations governing an active poroelastic medium.
    Collis J; Brown DL; Hubbard ME; O'Dea RD
    Proc Math Phys Eng Sci; 2017 Feb; 473(2198):20160755. PubMed ID: 28293138
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A multiscale analysis of nutrient transport and biological tissue growth in vitro.
    O'Dea RD; Nelson MR; El Haj AJ; Waters SL; Byrne HM
    Math Med Biol; 2015 Sep; 32(3):345-66. PubMed ID: 25323738
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effective Governing Equations for Viscoelastic Composites.
    Miller L; Ramírez-Torres A; Rodríguez-Ramos R; Penta R
    Materials (Basel); 2023 Jul; 16(14):. PubMed ID: 37512218
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modeling function-perfusion behavior in liver lobules including tissue, blood, glucose, lactate and glycogen by use of a coupled two-scale PDE-ODE approach.
    Ricken T; Werner D; Holzhütter HG; König M; Dahmen U; Dirsch O
    Biomech Model Mechanobiol; 2015 Jun; 14(3):515-36. PubMed ID: 25236798
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A biochemo-mechano coupled, computational model combining membrane transport and pericellular proteolysis in tissue mechanics.
    Vuong AT; Rauch AD; Wall WA
    Proc Math Phys Eng Sci; 2017 Mar; 473(2199):20160812. PubMed ID: 28413347
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multiscale modelling and homogenisation of fibre-reinforced hydrogels for tissue engineering.
    Chen MJ; Kimpton LS; Whiteley JP; Castilho M; Malda J; Please CP; Waters SL; Byrne HM
    Eur J Appl Math; 2020 Feb; 31(1):143-171. PubMed ID: 33149377
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Frequency-dependent effective hydraulic conductivity of strongly heterogeneous media.
    Caspari E; Gurevich B; Müller TM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Oct; 88(4):042119. PubMed ID: 24229128
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A poroelastic mixture model of mechanobiological processes in biomass growth: theory and application to tissue engineering.
    Sacco R; Causin P; Lelli C; Raimondi MT
    Meccanica; 2017; 52(14):3273-3297. PubMed ID: 32009677
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Wave equations for porous media described by the Biot model.
    Chandrasekaran SN; Näsholm SP; Holm S
    J Acoust Soc Am; 2022 Apr; 151(4):2576. PubMed ID: 35461498
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Numerical modeling of bone as a multiscale poroelastic material by the homogenization technique.
    Perrin E; Bou-Saïd B; Massi F
    J Mech Behav Biomed Mater; 2019 Mar; 91():373-382. PubMed ID: 30660050
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Macroscopic momentum and mechanical energy equations for incompressible single-phase flow in porous media.
    Paéz-García CT; Valdés-Parada FJ; Lasseux D
    Phys Rev E; 2017 Feb; 95(2-1):023101. PubMed ID: 28297957
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A computational continuum model of poroelastic beds.
    Lācis U; Zampogna GA; Bagheri S
    Proc Math Phys Eng Sci; 2017 Mar; 473(2199):20160932. PubMed ID: 28413355
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The impact of vascular volume fraction and compressibility of the interstitial matrix on vascularised poroelastic tissues.
    Mascheroni P; Penta R; Merodio J
    Biomech Model Mechanobiol; 2023 Dec; 22(6):1901-1917. PubMed ID: 37587330
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pore-scale simulation of fluid flow and solute dispersion in three-dimensional porous media.
    Icardi M; Boccardo G; Marchisio DL; Tosco T; Sethi R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jul; 90(1):013032. PubMed ID: 25122394
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hydrodynamic dispersion within porous biofilms.
    Davit Y; Byrne H; Osborne J; Pitt-Francis J; Gavaghan D; Quintard M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jan; 87(1):012718. PubMed ID: 23410370
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Determination of macro-scale soil properties from pore-scale structures: model derivation.
    Daly KR; Roose T
    Proc Math Phys Eng Sci; 2018 Jan; 474(2209):20170141. PubMed ID: 29434499
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bio-Mechanical Model of Osteosarcoma Tumor Microenvironment: A Porous Media Approach.
    Hu Y; Mohammad Mirzaei N; Shahriyari L
    Cancers (Basel); 2022 Dec; 14(24):. PubMed ID: 36551627
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Atomic force microscopy study revealed velocity-dependence and nonlinearity of nanoscale poroelasticity of eukaryotic cells.
    Mollaeian K; Liu Y; Bi S; Ren J
    J Mech Behav Biomed Mater; 2018 Feb; 78():65-73. PubMed ID: 29136577
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multiscale Asymptotic Analysis Reveals How Cell Growth and Subcellular Compartments Affect Tissue-Scale Hormone Transport.
    Kiradjiev KB; Band LR
    Bull Math Biol; 2023 Sep; 85(10):101. PubMed ID: 37702758
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Analysis of multiscale scattering and poroelastic attenuation in a real sedimentary rock sequence.
    Hackert CL; Parra JO
    J Acoust Soc Am; 2000 Jun; 107(6):3028-34. PubMed ID: 10875348
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.