These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 28293139)

  • 1. A vortex model for forces and moments on low-aspect-ratio wings in side-slip with experimental validation.
    DeVoria AC; Mohseni K
    Proc Math Phys Eng Sci; 2017 Feb; 473(2198):20160760. PubMed ID: 28293139
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Power reduction and the radial limit of stall delay in revolving wings of different aspect ratio.
    Kruyt JW; van Heijst GF; Altshuler DL; Lentink D
    J R Soc Interface; 2015 Apr; 12(105):. PubMed ID: 25788539
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The aerodynamics of revolving wings I. Model hawkmoth wings.
    Usherwood JR; Ellington CP
    J Exp Biol; 2002 Jun; 205(Pt 11):1547-64. PubMed ID: 12000800
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Unsteady aerodynamics of insect flight.
    Ellington CP
    Symp Soc Exp Biol; 1995; 49():109-29. PubMed ID: 8571220
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The PELskin project-part V: towards the control of the flow around aerofoils at high angle of attack using a self-activated deployable flap.
    Rosti ME; Kamps L; Bruecker C; Omidyeganeh M; Pinelli A
    Meccanica; 2017; 52(8):1811-1824. PubMed ID: 28529384
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Aerodynamic Effect of an Alula-like Vortex Generator on a Revolving Wing.
    Chung PH; Chang PH; Yeh SI
    Biomimetics (Basel); 2022 Sep; 7(3):. PubMed ID: 36134932
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The leading-edge vortex over a swift-like high-aspect-ratio wing with nonlinear swept-back geometry.
    Ben-Gida H; Gurka R
    Bioinspir Biomim; 2022 Oct; 17(6):. PubMed ID: 36261048
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dragonfly flight: free-flight and tethered flow visualizations reveal a diverse array of unsteady lift-generating mechanisms, controlled primarily via angle of attack.
    Thomas AL; Taylor GK; Srygley RB; Nudds RL; Bomphrey RJ
    J Exp Biol; 2004 Nov; 207(Pt 24):4299-323. PubMed ID: 15531651
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The role of the leading edge vortex in lift augmentation of steadily revolving wings: a change in perspective.
    Nabawy MRA; Crowther WJ
    J R Soc Interface; 2017 Jul; 14(132):. PubMed ID: 28747395
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spanwise flow and the attachment of the leading-edge vortex on insect wings.
    Birch JM; Dickinson MH
    Nature; 2001 Aug; 412(6848):729-33. PubMed ID: 11507639
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spanwise gradients in flow speed help stabilize leading-edge vortices on revolving wings.
    Jardin T; David L
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jul; 90(1):013011. PubMed ID: 25122373
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Combined particle-image velocimetry and force analysis of the three-dimensional fluid-structure interaction of a natural owl wing.
    Winzen A; Roidl B; Schröder W
    Bioinspir Biomim; 2016 Apr; 11(2):026005. PubMed ID: 27033298
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The leading-edge vortex of swift wing-shaped delta wings.
    Muir RE; Arredondo-Galeana A; Viola IM
    R Soc Open Sci; 2017 Aug; 4(8):170077. PubMed ID: 28878968
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modulation of leading edge vorticity and aerodynamic forces in flexible flapping wings.
    Zhao L; Deng X; Sane SP
    Bioinspir Biomim; 2011 Sep; 6(3):036007. PubMed ID: 21852729
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Leading-edge vortex stability in insect wings.
    Minotti FO; Speranza E
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 May; 71(5 Pt 1):051908. PubMed ID: 16089572
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Force production and flow structure of the leading edge vortex on flapping wings at high and low Reynolds numbers.
    Birch JM; Dickson WB; Dickinson MH
    J Exp Biol; 2004 Mar; 207(Pt 7):1063-72. PubMed ID: 14978049
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hovering efficiency comparison of rotary and flapping flight for rigid rectangular wings via dimensionless multi-objective optimization.
    Bayiz Y; Ghanaatpishe M; Fathy H; Cheng B
    Bioinspir Biomim; 2018 May; 13(4):046002. PubMed ID: 29557347
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Flow structure modifications by leading-edge tubercles on a 3D wing.
    Kim H; Kim J; Choi H
    Bioinspir Biomim; 2018 Oct; 13(6):066011. PubMed ID: 30362460
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Numerical simulation of X-wing type biplane flapping wings in 3D using the immersed boundary method.
    Tay WB; van Oudheusden BW; Bijl H
    Bioinspir Biomim; 2014 Sep; 9(3):036001. PubMed ID: 24584155
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of spanwise flexibility on the performance of flapping flyers in forward flight.
    Kodali D; Medina C; Kang CK; Aono H
    J R Soc Interface; 2017 Nov; 14(136):. PubMed ID: 29167372
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.