BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

205 related articles for article (PubMed ID: 28293181)

  • 1. From Anomalies to Essential Scientific Revolution? Intrinsic Brain Activity in the Light of Kuhn's Philosophy of Science.
    Havlík M
    Front Syst Neurosci; 2017; 11():7. PubMed ID: 28293181
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Development of Genetics in the Light of Thomas Kuhn's Theory of Scientific Revolutions.
    Portin P
    Recent Adv DNA Gene Seq; 2015; 9(1):14-25. PubMed ID: 26392355
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The state of the scientific revolution in toxicology.
    Hartung T; Tsatsakis AM
    ALTEX; 2021; 38(3):379-386. PubMed ID: 34164696
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Kuhn's paradigm concept and the paradigm development model of nursing knowledge].
    Hsieh SI; Hsu LL
    Hu Li Za Zhi; 2008 Feb; 55(1):63-9. PubMed ID: 18270934
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Motor Readiness Increases Brain Connectivity Between Default-Mode Network and Motor Cortex: Impact on Sampling Resting Periods from fMRI Event-Related Studies.
    Bazán PR; Biazoli CE; Sato JR; Amaro E
    Brain Connect; 2015 Dec; 5(10):631-40. PubMed ID: 26414865
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Establishing the resting state default mode network derived from functional magnetic resonance imaging tasks as an endophenotype: A twins study.
    Korgaonkar MS; Ram K; Williams LM; Gatt JM; Grieve SM
    Hum Brain Mapp; 2014 Aug; 35(8):3893-902. PubMed ID: 24453120
    [TBL] [Abstract][Full Text] [Related]  

  • 7. What we talk about when we talk about the default mode network.
    Callard F; Margulies DS
    Front Hum Neurosci; 2014; 8():619. PubMed ID: 25202250
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Revolutions in Neuroscience: Tool Development.
    Bickle J
    Front Syst Neurosci; 2016; 10():24. PubMed ID: 27013992
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mapping cognitive and emotional networks in neurosurgical patients using resting-state functional magnetic resonance imaging.
    Catalino MP; Yao S; Green DL; Laws ER; Golby AJ; Tie Y
    Neurosurg Focus; 2020 Feb; 48(2):E9. PubMed ID: 32006946
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Composite paradigms in medicine: analysing Gillies' claim of reclassification of disease without paradigm shift in the case of Helicobacter pylori.
    Hutton J
    Stud Hist Philos Biol Biomed Sci; 2012 Sep; 43(3):643-54. PubMed ID: 22728939
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Implication of the Slow-5 Oscillations in the Disruption of the Default-Mode Network in Healthy Aging and Stroke.
    La C; Nair VA; Mossahebi P; Young BM; Chacon M; Jensen M; Birn RM; Meyerand ME; Prabhakaran V
    Brain Connect; 2016 Jul; 6(6):482-95. PubMed ID: 27130180
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Differential tDCS and tACS Effects on Working Memory-Related Neural Activity and Resting-State Connectivity.
    Abellaneda-Pérez K; Vaqué-Alcázar L; Perellón-Alfonso R; Bargalló N; Kuo MF; Pascual-Leone A; Nitsche MA; Bartrés-Faz D
    Front Neurosci; 2019; 13():1440. PubMed ID: 32009896
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effects of lutein and zeaxanthin on resting state functional connectivity in older Caucasian adults: a randomized controlled trial.
    Lindbergh CA; Lv J; Zhao Y; Mewborn CM; Puente AN; Terry DP; Renzi-Hammond LM; Hammond BR; Liu T; Miller LS
    Brain Imaging Behav; 2020 Jun; 14(3):668-681. PubMed ID: 30680611
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Segregated precuneus network and default mode network in naturalistic imaging.
    Deng Z; Wu J; Gao J; Hu Y; Zhang Y; Wang Y; Dong H; Yang Z; Zuo X
    Brain Struct Funct; 2019 Dec; 224(9):3133-3144. PubMed ID: 31515678
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Altered static and dynamic functional connectivity of the default mode network across epilepsy subtypes in children: A resting-state fMRI study.
    Li Y; Ran Y; Yao M; Chen Q
    Neurobiol Dis; 2024 Mar; 192():106425. PubMed ID: 38296113
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Brain-wide mapping of resting-state networks in mice using high-frame rate functional ultrasound.
    Hikishima K; Tsurugizawa T; Kasahara K; Takagi R; Yoshinaka K; Nitta N
    Neuroimage; 2023 Oct; 279():120297. PubMed ID: 37500027
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A new paradigm for regulatory sciences.
    Hilton GM; Bhuller Y; Doe JE; Wolf DC; Currie RA
    Regul Toxicol Pharmacol; 2023 Dec; 145():105524. PubMed ID: 37925098
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Exploring variations in functional connectivity of the resting state default mode network in mild traumatic brain injury.
    Nathan DE; Oakes TR; Yeh PH; French LM; Harper JF; Liu W; Wolfowitz RD; Wang BQ; Graner JL; Riedy G
    Brain Connect; 2015 Mar; 5(2):102-14. PubMed ID: 25222050
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development of the default-mode network during childhood and adolescence: A longitudinal resting-state fMRI study.
    Fan F; Liao X; Lei T; Zhao T; Xia M; Men W; Wang Y; Hu M; Liu J; Qin S; Tan S; Gao JH; Dong Q; Tao S; He Y
    Neuroimage; 2021 Feb; 226():117581. PubMed ID: 33221440
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effective Connectivity within the Default Mode Network: Dynamic Causal Modeling of Resting-State fMRI Data.
    Sharaev MG; Zavyalova VV; Ushakov VL; Kartashov SI; Velichkovsky BM
    Front Hum Neurosci; 2016; 10():14. PubMed ID: 26869900
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.