These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

232 related articles for article (PubMed ID: 28293182)

  • 1. Visual Field Map Clusters in High-Order Visual Processing: Organization of V3A/V3B and a New Cloverleaf Cluster in the Posterior Superior Temporal Sulcus.
    Barton B; Brewer AA
    Front Integr Neurosci; 2017; 11():4. PubMed ID: 28293182
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cortical field maps across human sensory cortex.
    Brewer AA; Barton B
    Front Comput Neurosci; 2023; 17():1232005. PubMed ID: 38164408
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Visual field maps in human cortex.
    Wandell BA; Dumoulin SO; Brewer AA
    Neuron; 2007 Oct; 56(2):366-83. PubMed ID: 17964252
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Maps of the Auditory Cortex.
    Brewer AA; Barton B
    Annu Rev Neurosci; 2016 Jul; 39():385-407. PubMed ID: 27145914
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pathways for motion analysis: cortical connections of the medial superior temporal and fundus of the superior temporal visual areas in the macaque.
    Boussaoud D; Ungerleider LG; Desimone R
    J Comp Neurol; 1990 Jun; 296(3):462-95. PubMed ID: 2358548
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Visual areas and spatial summation in human visual cortex.
    Press WA; Brewer AA; Dougherty RF; Wade AR; Wandell BA
    Vision Res; 2001; 41(10-11):1321-32. PubMed ID: 11322977
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Visual motion transforms visual space representations similarly throughout the human visual hierarchy.
    Harvey BM; Dumoulin SO
    Neuroimage; 2016 Feb; 127():173-185. PubMed ID: 26666897
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mouth and Voice: A Relationship between Visual and Auditory Preference in the Human Superior Temporal Sulcus.
    Zhu LL; Beauchamp MS
    J Neurosci; 2017 Mar; 37(10):2697-2708. PubMed ID: 28179553
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Organization of visual inputs to the inferior temporal and posterior parietal cortex in macaques.
    Baizer JS; Ungerleider LG; Desimone R
    J Neurosci; 1991 Jan; 11(1):168-90. PubMed ID: 1702462
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spatiotemporal activity of a cortical network for processing visual motion revealed by MEG and fMRI.
    Ahlfors SP; Simpson GV; Dale AM; Belliveau JW; Liu AK; Korvenoja A; Virtanen J; Huotilainen M; Tootell RB; Aronen HJ; Ilmoniemi RJ
    J Neurophysiol; 1999 Nov; 82(5):2545-55. PubMed ID: 10561425
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Visual cortex in aging and Alzheimer's disease: changes in visual field maps and population receptive fields.
    Brewer AA; Barton B
    Front Psychol; 2014; 5():74. PubMed ID: 24570669
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Visual receptive field organization and cortico-cortical connections of the lateral intraparietal area (area LIP) in the macaque.
    Blatt GJ; Andersen RA; Stoner GR
    J Comp Neurol; 1990 Sep; 299(4):421-45. PubMed ID: 2243159
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Distinct cortical locations for integration of audiovisual speech and the McGurk effect.
    Erickson LC; Zielinski BA; Zielinski JE; Liu G; Turkeltaub PE; Leaver AM; Rauschecker JP
    Front Psychol; 2014; 5():534. PubMed ID: 24917840
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Radial asymmetries in population receptive field size and cortical magnification factor in early visual cortex.
    Silva MF; Brascamp JW; Ferreira S; Castelo-Branco M; Dumoulin SO; Harvey BM
    Neuroimage; 2018 Feb; 167():41-52. PubMed ID: 29155078
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Posterior parietal cortex in rhesus monkey: I. Parcellation of areas based on distinctive limbic and sensory corticocortical connections.
    Cavada C; Goldman-Rakic PS
    J Comp Neurol; 1989 Sep; 287(4):393-421. PubMed ID: 2477405
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evaluating the correspondence between face-, scene-, and object-selectivity and retinotopic organization within lateral occipitotemporal cortex.
    Silson EH; Groen II; Kravitz DJ; Baker CI
    J Vis; 2016; 16(6):14. PubMed ID: 27105060
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The topographic organization of rhesus monkey prestriate cortex.
    Essen DC; Zeki SM
    J Physiol; 1978 Apr; 277():193-226. PubMed ID: 418173
    [TBL] [Abstract][Full Text] [Related]  

  • 18. fMRI Measures of perceptual filling-in in the human visual cortex.
    Mendola JD; Conner IP; Sharma S; Bahekar A; Lemieux S
    J Cogn Neurosci; 2006 Mar; 18(3):363-75. PubMed ID: 16513002
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Population receptive field tuning properties of visual cortex during childhood.
    Dekker TM; Schwarzkopf DS; de Haas B; Nardini M; Sereno MI
    Dev Cogn Neurosci; 2019 Jun; 37():100614. PubMed ID: 30777677
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Uniformity and diversity of structure and function in rhesus monkey prestriate visual cortex.
    Zeki SM
    J Physiol; 1978 Apr; 277():273-90. PubMed ID: 418176
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.