These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
150 related articles for article (PubMed ID: 28293874)
1. Diversity of actin architecture in human osteoclasts: network of curved and branched actin supporting cell shape and intercellular micrometer-level tubes. Pennanen P; Alanne MH; Fazeli E; Deguchi T; Näreoja T; Peltonen S; Peltonen J Mol Cell Biochem; 2017 Aug; 432(1-2):131-139. PubMed ID: 28293874 [TBL] [Abstract][Full Text] [Related]
2. Adhesion structures and their cytoskeleton-membrane interactions at podosomes of osteoclasts in culture. Akisaka T; Yoshida H; Suzuki R; Takama K Cell Tissue Res; 2008 Mar; 331(3):625-41. PubMed ID: 18087726 [TBL] [Abstract][Full Text] [Related]
3. Coordination of microtubules and the actin cytoskeleton is important in osteoclast function, but calcitonin disrupts sealing zones without affecting microtubule networks. Okumura S; Mizoguchi T; Sato N; Yamaki M; Kobayashi Y; Yamauchi H; Ozawa H; Udagawa N; Takahashi N Bone; 2006 Oct; 39(4):684-93. PubMed ID: 16774853 [TBL] [Abstract][Full Text] [Related]
5. Organization of cytoskeletal F-actin, G-actin, and gelsolin in the adhesion structures in cultured osteoclast. Akisaka T; Yoshida H; Inoue S; Shimizu K J Bone Miner Res; 2001 Jul; 16(7):1248-55. PubMed ID: 11450700 [TBL] [Abstract][Full Text] [Related]
6. Cortactin has an essential and specific role in osteoclast actin assembly. Tehrani S; Faccio R; Chandrasekar I; Ross FP; Cooper JA Mol Biol Cell; 2006 Jul; 17(7):2882-95. PubMed ID: 16611741 [TBL] [Abstract][Full Text] [Related]
7. Role of actin filaments in fusopod formation and osteoclastogenesis. Wang Y; Brooks PJ; Jang JJ; Silver AS; Arora PD; McCulloch CA; Glogauer M Biochim Biophys Acta; 2015 Jul; 1853(7):1715-24. PubMed ID: 25871908 [TBL] [Abstract][Full Text] [Related]
8. New roles of filopodia and podosomes in the differentiation and fusion process of osteoclasts. Song RL; Liu XZ; Zhu JQ; Zhang JM; Gao Q; Zhao HY; Sheng AZ; Yuan Y; Gu JH; Zou H; Wang QC; Liu ZP Genet Mol Res; 2014 Jul; 13(3):4776-87. PubMed ID: 25062413 [TBL] [Abstract][Full Text] [Related]
9. Actin-related protein 2/3 complex is required for actin ring formation. Hurst IR; Zuo J; Jiang J; Holliday LS J Bone Miner Res; 2004 Mar; 19(3):499-506. PubMed ID: 15040839 [TBL] [Abstract][Full Text] [Related]
10. Visualization of structural organization of ventral membranes of sheared-open resorbing osteoclasts attached to apatite pellets. Akisaka T; Yoshida A Cell Tissue Res; 2015 May; 360(2):347-62. PubMed ID: 25582780 [TBL] [Abstract][Full Text] [Related]
11. Nanoscale architecture and coordination of actin cores within the sealing zone of human osteoclasts. Portes M; Mangeat T; Escallier N; Dufrancais O; Raynaud-Messina B; Thibault C; Maridonneau-Parini I; Vérollet C; Poincloux R Elife; 2022 Jun; 11():. PubMed ID: 35727134 [TBL] [Abstract][Full Text] [Related]
12. The transient appearance of zipper-like actin superstructures during the fusion of osteoclasts. Takito J; Nakamura M; Yoda M; Tohmonda T; Uchikawa S; Horiuchi K; Toyama Y; Chiba K J Cell Sci; 2012 Feb; 125(Pt 3):662-72. PubMed ID: 22349694 [TBL] [Abstract][Full Text] [Related]
13. The architecture of the adhesive apparatus of cultured osteoclasts: from podosome formation to sealing zone assembly. Luxenburg C; Geblinger D; Klein E; Anderson K; Hanein D; Geiger B; Addadi L PLoS One; 2007 Jan; 2(1):e179. PubMed ID: 17264882 [TBL] [Abstract][Full Text] [Related]
14. Profilin-1 negatively controls osteoclast migration by suppressing the protrusive structures based on branched actin filaments. Kajikawa S; Ezura Y; Izu Y; Nakashima K; Noda M; Nifuji A J Bone Miner Metab; 2022 Jul; 40(4):561-570. PubMed ID: 35428898 [TBL] [Abstract][Full Text] [Related]
15. Myosins in Osteoclast Formation and Function. Lee BS Biomolecules; 2018 Nov; 8(4):. PubMed ID: 30467281 [TBL] [Abstract][Full Text] [Related]
16. Anti-osteoclastic effects of C-glucosidic ellagitannins mediated by actin perturbation. Georgess D; Spuul P; Le Clainche C; Le Nihouannen D; Fremaux I; Dakhli T; Delannoy López DM; Deffieux D; Jurdic P; Quideau S; Génot E Eur J Cell Biol; 2018 Nov; 97(8):533-545. PubMed ID: 30287085 [TBL] [Abstract][Full Text] [Related]
17. Reversible protein phosphorylation regulates the dynamic organization of the pollen tube cytoskeleton: effects of calyculin A and okadaic acid. Foissner I; Grolig F; Obermeyer G Protoplasma; 2002 Oct; 220(1-2):1-15. PubMed ID: 12417932 [TBL] [Abstract][Full Text] [Related]
18. Scattered podosomes and podosomes associated with the sealing zone architecture in cultured osteoclasts revealed by cell shearing, quick freezing, and platinum-replica electron microscopy. Akisaka T; Yoshida A Cytoskeleton (Hoboken); 2019 Apr; 76(4):303-321. PubMed ID: 31162808 [TBL] [Abstract][Full Text] [Related]
19. Actin cytoskeletal organisation in osteoclasts: a model to decipher transmigration and matrix degradation. Saltel F; Chabadel A; Bonnelye E; Jurdic P Eur J Cell Biol; 2008 Sep; 87(8-9):459-68. PubMed ID: 18294724 [TBL] [Abstract][Full Text] [Related]
20. The ruffled border and attachment regions of the apposing membrane of resorbing osteoclasts as visualized from the cytoplasmic face of the membrane. Akisaka T; Yoshida H; Suzuki R J Electron Microsc (Tokyo); 2006 Apr; 55(2):53-61. PubMed ID: 16775216 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]