These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 28293954)

  • 1. An All-Organic Proton Battery.
    Emanuelsson R; Sterby M; Strømme M; Sjödin M
    J Am Chem Soc; 2017 Apr; 139(13):4828-4834. PubMed ID: 28293954
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Li-ion rechargeable battery: a perspective.
    Goodenough JB; Park KS
    J Am Chem Soc; 2013 Jan; 135(4):1167-76. PubMed ID: 23294028
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Sulfur Heterocyclic Quinone Cathode and a Multifunctional Binder for a High-Performance Rechargeable Lithium-Ion Battery.
    Ma T; Zhao Q; Wang J; Pan Z; Chen J
    Angew Chem Int Ed Engl; 2016 May; 55(22):6428-32. PubMed ID: 27080745
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An inter-tangled network of redox-active and conducting polymers as a cathode for ultrafast rechargeable batteries.
    Kim J; Park HS; Kim TH; Kim SY; Song HK
    Phys Chem Chem Phys; 2014 Mar; 16(11):5295-300. PubMed ID: 24496407
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quinone Based Materials as Renewable High Energy Density Cathode Materials for Rechargeable Magnesium Batteries.
    Bitenc J; Pavčnik T; Košir U; Pirnat K
    Materials (Basel); 2020 Jan; 13(3):. PubMed ID: 31973193
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Poly(benzoquinonyl sulfide) as a High-Energy Organic Cathode for Rechargeable Li and Na Batteries.
    Song Z; Qian Y; Zhang T; Otani M; Zhou H
    Adv Sci (Weinh); 2015 Sep; 2(9):1500124. PubMed ID: 27980977
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An Aqueous Conducting Redox-Polymer-Based Proton Battery that Can Withstand Rapid Constant-Voltage Charging and Sub-Zero Temperatures.
    Strietzel C; Sterby M; Huang H; Strømme M; Emanuelsson R; Sjödin M
    Angew Chem Int Ed Engl; 2020 Jun; 59(24):9631-9638. PubMed ID: 32180324
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Anthraquinone-Based Oligomer as a Long Cycle-Life Organic Electrode Material for Use in Rechargeable Batteries.
    Yao M; Sano H; Ando H; Kiyobayashi T; Takeichi N
    Chemphyschem; 2019 Apr; 20(7):967-971. PubMed ID: 30775839
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electrochemical Behavior of PEDOT/Lignin in Ionic Liquid Electrolytes: Suitable Cathode/Electrolyte System for Sodium Batteries.
    Casado N; Hilder M; Pozo-Gonzalo C; Forsyth M; Mecerreyes D
    ChemSusChem; 2017 Apr; 10(8):1783-1791. PubMed ID: 28198593
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An Alternative to Carbon Additives: The Fabrication of Conductive Layers Enabled by Soluble Conducting Polymer Precursors - A Case Study for Organic Batteries.
    Strietzel C; Oka K; Strømme M; Emanuelsson R; Sjödin M
    ACS Appl Mater Interfaces; 2021 Feb; 13(4):5349-5356. PubMed ID: 33481558
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bioinspired Catechol-Grafting PEDOT Cathode for an All-Polymer Aqueous Proton Battery with High Voltage and Outstanding Rate Capacity.
    Zhu M; Zhao L; Ran Q; Zhang Y; Peng R; Lu G; Jia X; Chao D; Wang C
    Adv Sci (Weinh); 2022 Feb; 9(4):e2103896. PubMed ID: 34914857
    [TBL] [Abstract][Full Text] [Related]  

  • 12. All-Organic Rechargeable Battery with Reversibility Supported by "Water-in-Salt" Electrolyte.
    Dong X; Yu H; Ma Y; Bao JL; Truhlar DG; Wang Y; Xia Y
    Chemistry; 2017 Feb; 23(11):2560-2565. PubMed ID: 28075043
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Conducting Redox Polymer as a Robust Organic Electrode-Active Material in Acidic Aqueous Electrolyte towards Polymer-Air Secondary Batteries.
    Oka K; Strietzel C; Emanuelsson R; Nishide H; Oyaizu K; Strømme M; Sjödin M
    ChemSusChem; 2020 May; 13(9):2280-2285. PubMed ID: 32267605
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rocking-Chair Proton Batteries with Conducting Redox Polymer Active Materials and Protic Ionic Liquid Electrolytes.
    Wang H; Emanuelsson R; Karlsson C; Jannasch P; Strømme M; Sjödin M
    ACS Appl Mater Interfaces; 2021 Apr; 13(16):19099-19108. PubMed ID: 33856185
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Si/SiO
    Park E; Kim J; Chung DJ; Park MS; Kim H; Kim JH
    ChemSusChem; 2016 Oct; 9(19):2754-2758. PubMed ID: 27572935
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Improvement of the Battery Performance of Indigo, an Organic Electrode Material, Using PEDOT/PSS with d-Sorbitol.
    Kato M; Sano H; Kiyobayashi T; Takeichi N; Yao M
    ACS Omega; 2020 Aug; 5(30):18565-18572. PubMed ID: 32775857
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Poly(2,5-dimercapto-1,3,4-thiadiazole) as a cathode for rechargeable lithium batteries with dramatically improved performance.
    Gao J; Lowe MA; Conte S; Burkhardt SE; Abruña HD
    Chemistry; 2012 Jul; 18(27):8521-6. PubMed ID: 22644940
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanochemical Synthesis of PEDOT:PSS Hydrogels for Aqueous Formulation of Li-Ion Battery Electrodes.
    Sandu G; Ernould B; Rolland J; Cheminet N; Brassinne J; Das PR; Filinchuk Y; Cheng L; Komsiyska L; Dubois P; Melinte S; Gohy JF; Lazzaroni R; Vlad A
    ACS Appl Mater Interfaces; 2017 Oct; 9(40):34865-34874. PubMed ID: 28910075
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Redox-Active Covalent Organic Framework with Highly Accessible Aniline-Fused Quinonoid Units Affords Efficient Proton Charge Storage.
    Yan X; Wang F; Su X; Ren J; Qi M; Bao P; Chen W; Peng C; Chen L
    Adv Mater; 2023 Nov; 35(44):e2305037. PubMed ID: 37728857
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhanced Lithium-Ion Storage Capability of a Bismuth Sulfide/Graphene Oxide/Poly(3,4-ethylenedioxythiophene) Composite.
    Mukkabla R; Deepa M; Srivastava AK
    Chemphyschem; 2015 Oct; 16(15):3242-53. PubMed ID: 26247745
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.