These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
133 related articles for article (PubMed ID: 28294054)
21. Crossing the Blood-Brain Barrier: Recent Advances in Drug Delivery to the Brain. Patel MM; Patel BM CNS Drugs; 2017 Feb; 31(2):109-133. PubMed ID: 28101766 [TBL] [Abstract][Full Text] [Related]
22. PEGylation of polylysine dendrimers improves absorption and lymphatic targeting following SC administration in rats. Kaminskas LM; Kota J; McLeod VM; Kelly BD; Karellas P; Porter CJ J Control Release; 2009 Dec; 140(2):108-16. PubMed ID: 19686787 [TBL] [Abstract][Full Text] [Related]
23. Transcorneal iontophoresis of dendrimers: PAMAM corneal penetration and dexamethasone delivery. Souza JG; Dias K; Silva SA; de Rezende LC; Rocha EM; Emery FS; Lopez RF J Control Release; 2015 Feb; 200():115-24. PubMed ID: 25553828 [TBL] [Abstract][Full Text] [Related]
24. Chemical Structure and Surface Modification of Dendritic Nanomaterials Tailored for Therapeutic and Diagnostic Applications. Myung JH; Hsu HJ; Bugno J; Tam KA; Hong S Curr Top Med Chem; 2017; 17(13):1542-1554. PubMed ID: 28017148 [TBL] [Abstract][Full Text] [Related]
25. Cationic poly-L-lysine dendrimers: pharmacokinetics, biodistribution, and evidence for metabolism and bioresorption after intravenous administration to rats. Boyd BJ; Kaminskas LM; Karellas P; Krippner G; Lessene R; Porter CJ Mol Pharm; 2006; 3(5):614-27. PubMed ID: 17009860 [TBL] [Abstract][Full Text] [Related]
26. Generation-6 hydroxyl PAMAM dendrimers improve CNS penetration from intravenous administration in a large animal brain injury model. Zhang F; Trent Magruder J; Lin YA; Crawford TC; Grimm JC; Sciortino CM; Wilson MA; Blue ME; Kannan S; Johnston MV; Baumgartner WA; Kannan RM J Control Release; 2017 Mar; 249():173-182. PubMed ID: 28137632 [TBL] [Abstract][Full Text] [Related]
27. Generation dependent cancer targeting potential of poly(propyleneimine) dendrimer. Kesharwani P; Tekade RK; Jain NK Biomaterials; 2014 Jul; 35(21):5539-48. PubMed ID: 24731713 [TBL] [Abstract][Full Text] [Related]
28. Dendrimers: Patents for Alzheimer's Disease. Maheshwari S; Singh A Recent Pat Nanotechnol; 2023 Oct; ():. PubMed ID: 37904560 [TBL] [Abstract][Full Text] [Related]
29. Effects of PEGylation and acetylation of PAMAM dendrimers on DNA binding, cytotoxicity and in vitro transfection efficiency. Fant K; Esbjörner EK; Jenkins A; Grossel MC; Lincoln P; Nordén B Mol Pharm; 2010 Oct; 7(5):1734-46. PubMed ID: 20695423 [TBL] [Abstract][Full Text] [Related]
30. Dendrimer nanocarriers for transport modulation across models of the pulmonary epithelium. Bharatwaj B; Mohammad AK; Dimovski R; Cassio FL; Bazito RC; Conti D; Fu Q; Reineke J; da Rocha SR Mol Pharm; 2015 Mar; 12(3):826-38. PubMed ID: 25455560 [TBL] [Abstract][Full Text] [Related]
31. Dendrimers as potential drug carriers. Part II. Prolonged delivery of ketoprofen by in vitro and in vivo studies. Na M; Yiyun C; Tongwen X; Yang D; Xiaomin W; Zhenwei L; Zhichao C; Guanyi H; Yunyu S; Longping W Eur J Med Chem; 2006 May; 41(5):670-4. PubMed ID: 16527374 [TBL] [Abstract][Full Text] [Related]
32. Effect of the Conjugation Density of Triphenylphosphonium Cation on the Mitochondrial Targeting of Poly(amidoamine) Dendrimers. Bielski ER; Zhong Q; Brown M; da Rocha SR Mol Pharm; 2015 Aug; 12(8):3043-53. PubMed ID: 26158804 [TBL] [Abstract][Full Text] [Related]
33. Development of PEGylated carboxylic acid-modified polyamidoamine dendrimers as bone-targeting carriers for the treatment of bone diseases. Yamashita S; Katsumi H; Hibino N; Isobe Y; Yagi Y; Kusamori K; Sakane T; Yamamoto A J Control Release; 2017 Sep; 262():10-17. PubMed ID: 28710004 [TBL] [Abstract][Full Text] [Related]
34. Carboxymethyl chitosan-poly(amidoamine) dendrimer core-shell nanoparticles for intracellular lysozyme delivery. Zhang X; Zhao J; Wen Y; Zhu C; Yang J; Yao F Carbohydr Polym; 2013 Nov; 98(2):1326-34. PubMed ID: 24053810 [TBL] [Abstract][Full Text] [Related]
35. Multifunctional lactobionic acid-modified dendrimers for targeted drug delivery to liver cancer cells: investigating the role played by PEG spacer. Fu F; Wu Y; Zhu J; Wen S; Shen M; Shi X ACS Appl Mater Interfaces; 2014 Sep; 6(18):16416-25. PubMed ID: 25185074 [TBL] [Abstract][Full Text] [Related]
36. Ligand anchored poly(propyleneimine) dendrimers for brain targeting: Comparative in vitro and in vivo assessment. Patel HK; Gajbhiye V; Kesharwani P; Jain NK J Colloid Interface Sci; 2016 Nov; 482():142-150. PubMed ID: 27501037 [TBL] [Abstract][Full Text] [Related]
37. Gene delivery efficiency and cytotoxicity of heterocyclic amine-modified PAMAM and PPI dendrimers. Hashemi M; Tabatabai SM; Parhiz H; Milanizadeh S; Amel Farzad S; Abnous K; Ramezani M Mater Sci Eng C Mater Biol Appl; 2016 Apr; 61():791-800. PubMed ID: 26838910 [TBL] [Abstract][Full Text] [Related]
39. Improved tumor targetability of Tat-conjugated PAMAM dendrimers as a novel nanosized anti-tumor drug carrier. Yan C; Gu J; Hou D; Jing H; Wang J; Guo Y; Katsumi H; Sakane T; Yamamoto A Drug Dev Ind Pharm; 2015 Apr; 41(4):617-22. PubMed ID: 24564798 [TBL] [Abstract][Full Text] [Related]
40. Nano carriers for drug transport across the blood-brain barrier. Li X; Tsibouklis J; Weng T; Zhang B; Yin G; Feng G; Cui Y; Savina IN; Mikhalovska LI; Sandeman SR; Howel CA; Mikhalovsky SV J Drug Target; 2017 Jan; 25(1):17-28. PubMed ID: 27126681 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]