These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
133 related articles for article (PubMed ID: 28294054)
41. Effect of poly(amidoamine) dendrimers on the structure and activity of immune molecules. Lin J; Hua W; Zhang Y; Li C; Xue W; Yin J; Liu Z; Qiu X Biochim Biophys Acta; 2015 Feb; 1850(2):419-25. PubMed ID: 25463324 [TBL] [Abstract][Full Text] [Related]
42. Advanced targeted therapies in cancer: Drug nanocarriers, the future of chemotherapy. Pérez-Herrero E; Fernández-Medarde A Eur J Pharm Biopharm; 2015 Jun; 93():52-79. PubMed ID: 25813885 [TBL] [Abstract][Full Text] [Related]
43. Polypropyleneimine and polyamidoamine dendrimer mediated enhanced solubilization of bortezomib: Comparison and evaluation of mechanistic aspects by thermodynamics and molecular simulations. Chaudhary S; Gothwal A; Khan I; Srivastava S; Malik R; Gupta U Mater Sci Eng C Mater Biol Appl; 2017 Mar; 72():611-619. PubMed ID: 28024628 [TBL] [Abstract][Full Text] [Related]
44. gamma-Glutamyl PAMAM dendrimer as versatile precursor for dendrimer-based targeting devices. Uehara T; Ishii D; Uemura T; Suzuki H; Kanei T; Takagi K; Takama M; Murakami M; Akizawa H; Arano Y Bioconjug Chem; 2010 Jan; 21(1):175-81. PubMed ID: 20000792 [TBL] [Abstract][Full Text] [Related]
45. Cellular uptake of glucoheptoamidated poly(amidoamine) PAMAM G3 dendrimer with amide-conjugated biotin, a potential carrier of anticancer drugs. Uram Ł; Szuster M; Filipowicz A; Zaręba M; Wałajtys-Rode E; Wołowiec S Bioorg Med Chem; 2017 Jan; 25(2):706-713. PubMed ID: 27919613 [TBL] [Abstract][Full Text] [Related]
46. Expand classical drug administration ways by emerging routes using dendrimer drug delivery systems: a concise overview. Mignani S; El Kazzouli S; Bousmina M; Majoral JP Adv Drug Deliv Rev; 2013 Oct; 65(10):1316-30. PubMed ID: 23415951 [TBL] [Abstract][Full Text] [Related]
47. Interactions between U-937 human macrophages and poly(propyleneimine) dendrimers. Kuo JH; Jan MS; Lin YL J Control Release; 2007 Jul; 120(1-2):51-9. PubMed ID: 17537537 [TBL] [Abstract][Full Text] [Related]
48. Medicinal chemistry based approaches and nanotechnology-based systems to improve CNS drug targeting and delivery. Vlieghe P; Khrestchatisky M Med Res Rev; 2013 May; 33(3):457-516. PubMed ID: 22434495 [TBL] [Abstract][Full Text] [Related]
49. In vitro and in vivo uptake studies of PAMAM G4.5 dendrimers in breast cancer. Oddone N; Lecot N; Fernández M; Rodriguez-Haralambides A; Cabral P; Cerecetto H; Benech JC J Nanobiotechnology; 2016 Jun; 14(1):45. PubMed ID: 27297021 [TBL] [Abstract][Full Text] [Related]
50. Dendrimers for enhanced drug solubilization. Svenson S; Chauhan AS Nanomedicine (Lond); 2008 Oct; 3(5):679-702. PubMed ID: 18817470 [TBL] [Abstract][Full Text] [Related]
51. Dexamethasone - PAMAM dendrimer conjugates for retinal delivery: preparation, characterization and in vivo evaluation. Yavuz B; Bozdağ Pehlivan S; Sümer Bolu B; Nomak Sanyal R; Vural İ; Ünlü N J Pharm Pharmacol; 2016 Aug; 68(8):1010-20. PubMed ID: 27283886 [TBL] [Abstract][Full Text] [Related]
52. Dendrimers as a promising tool in ocular therapeutics: Latest advances and perspectives. Rodríguez Villanueva J; Navarro MG; Rodríguez Villanueva L Int J Pharm; 2016 Sep; 511(1):359-366. PubMed ID: 27436708 [TBL] [Abstract][Full Text] [Related]
53. Preparation and in vitro characterization of pluronic-attached polyamidoamine dendrimers for drug delivery. Gu Z; Wang M; Fang Q; Zheng H; Wu F; Lin D; Xu Y; Jin Y Drug Dev Ind Pharm; 2015 May; 41(5):812-8. PubMed ID: 24745851 [TBL] [Abstract][Full Text] [Related]
54. Quantitative evaluation of the effect of poly(amidoamine) dendrimers on the porosity of epithelial monolayers. Lin YL; Khanafer K; El-Sayed ME Nanoscale; 2010 May; 2(5):755-62. PubMed ID: 20648321 [TBL] [Abstract][Full Text] [Related]
55. Dendrimers as versatile platform in drug delivery applications. Svenson S Eur J Pharm Biopharm; 2009 Mar; 71(3):445-62. PubMed ID: 18976707 [TBL] [Abstract][Full Text] [Related]
56. Investigations on biodistribution of technetium-99m-labeled carbohydrate-coated poly(propylene imine) dendrimers. Agashe HB; Babbar AK; Jain S; Sharma RK; Mishra AK; Asthana A; Garg M; Dutta T; Jain NK Nanomedicine; 2007 Jun; 3(2):120-7. PubMed ID: 17572354 [TBL] [Abstract][Full Text] [Related]
57. Concepts, technologies, and practices for drug delivery past the blood-brain barrier to the central nervous system. Crawford L; Rosch J; Putnam D J Control Release; 2016 Oct; 240():251-266. PubMed ID: 26724368 [TBL] [Abstract][Full Text] [Related]
58. Evidence of oral translocation of anionic G6.5 dendrimers in mice. Thiagarajan G; Sadekar S; Greish K; Ray A; Ghandehari H Mol Pharm; 2013 Mar; 10(3):988-98. PubMed ID: 23286733 [TBL] [Abstract][Full Text] [Related]
59. Nanoparticle transport across the blood brain barrier. Grabrucker AM; Ruozi B; Belletti D; Pederzoli F; Forni F; Vandelli MA; Tosi G Tissue Barriers; 2016; 4(1):e1153568. PubMed ID: 27141426 [TBL] [Abstract][Full Text] [Related]
60. Nanoparticle-mediated brain-specific drug delivery, imaging, and diagnosis. Yang H Pharm Res; 2010 Sep; 27(9):1759-71. PubMed ID: 20593303 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]