BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

75 related articles for article (PubMed ID: 28294189)

  • 1. Droughts in India from 1981 to 2013 and Implications to Wheat Production.
    Zhang X; Obringer R; Wei C; Chen N; Niyogi D
    Sci Rep; 2017 Mar; 7():44552. PubMed ID: 28294189
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evolution of drought characteristics and propagation from meteorological to agricultural drought under the influences of climate change and human activities.
    Li L; Peng Q; Li Z; Cai H
    Environ Sci Pollut Res Int; 2024 Apr; 31(18):26713-26736. PubMed ID: 38459284
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multimodal deep learning-based drought monitoring research for winter wheat during critical growth stages.
    Yao J; Wu Y; Liu J; Wang H
    PLoS One; 2024; 19(5):e0300746. PubMed ID: 38722916
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of Drought on Agronomic Traits of Rice and Wheat: A Meta-Analysis.
    Zhang J; Zhang S; Cheng M; Jiang H; Zhang X; Peng C; Lu X; Zhang M; Jin J
    Int J Environ Res Public Health; 2018 Apr; 15(5):. PubMed ID: 29695095
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Stay-green in spring wheat can be determined by spectral reflectance measurements (normalized difference vegetation index) independently from phenology.
    Lopes MS; Reynolds MP
    J Exp Bot; 2012 Jun; 63(10):3789-98. PubMed ID: 22412185
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Global Synthesis of Drought Effects on Maize and Wheat Production.
    Daryanto S; Wang L; Jacinthe PA
    PLoS One; 2016; 11(5):e0156362. PubMed ID: 27223810
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Analysing spatio-temporal drought characteristics and copula-based return period in Indian Gangetic Basin (1901-2021).
    Bera D; Dutta D
    Environ Sci Pollut Res Int; 2024 Mar; 31(15):22471-22493. PubMed ID: 38407708
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Possible factors determining global-scale patterns of crop yield sensitivity to drought.
    Hendrawan VSA; Komori D; Kim W
    PLoS One; 2023; 18(2):e0281287. PubMed ID: 36730322
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A component-based system for agricultural drought monitoring by remote sensing.
    Dong H; Li J; Yuan Y; You L; Chen C
    PLoS One; 2017; 12(12):e0188687. PubMed ID: 29236700
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Assessing the effects of drought on rainfed maize water footprints based on remote sensing approaches.
    Li B; Qin L; Qi H; Wang J; Dang Y; Lv M; He H
    J Sci Food Agric; 2024 Jan; 104(2):1154-1165. PubMed ID: 37735953
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Remote sensing-based drought hazard monitoring and assessment in a coastal plain: A principal component approach.
    Johnny Jesudhas C; C JT; Roy T
    Environ Res; 2024 Feb; 243():117757. PubMed ID: 38029824
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Global eight drought types: Spatio-temporal characteristics and vegetation response.
    Ji Y; Zeng S; Yang L; Wan H; Xia J
    J Environ Manage; 2024 May; 359():121069. PubMed ID: 38714034
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Drought Atlas of India, 1901-2020.
    Chuphal DS; Kushwaha AP; Aadhar S; Mishra V
    Sci Data; 2024 Jan; 11(1):7. PubMed ID: 38168497
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Increasing frequency and spatial extent of concurrent meteorological droughts and heatwaves in India.
    Sharma S; Mujumdar P
    Sci Rep; 2017 Nov; 7(1):15582. PubMed ID: 29138468
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spatio-temporal variability of meteorological drought over India with footprints on agricultural production.
    Dar J; Dar AQ
    Environ Sci Pollut Res Int; 2021 Oct; 28(39):55796-55809. PubMed ID: 34142325
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Correlation analysis of different optical remote sensing indices for drought monitoring: a case study of Canton Sarajevo, Bosnia and Herzegovina.
    Đidelija M; Kulo N; Mulahusić A; Tuno N; Topoljak J
    Environ Monit Assess; 2023 Oct; 195(11):1338. PubMed ID: 37856003
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Global integrated drought monitoring and prediction system.
    Hao Z; AghaKouchak A; Nakhjiri N; Farahmand A
    Sci Data; 2014; 1():140001. PubMed ID: 25977759
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Prospecting the Potential of Plant Growth-Promoting Microorganisms for Mitigating Drought Stress in Crop Plants.
    Singh D; Thapa S; Singh JP; Mahawar H; Saxena AK; Singh SK; Mahla HR; Choudhary M; Parihar M; Choudhary KB; Chakdar H
    Curr Microbiol; 2024 Jan; 81(3):84. PubMed ID: 38294725
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Civil conflict sensitivity to growing-season drought.
    von Uexkull N; Croicu M; Fjelde H; Buhaug H
    Proc Natl Acad Sci U S A; 2016 Nov; 113(44):12391-12396. PubMed ID: 27791091
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In-season performance of European Union wheat forecasts during extreme impacts.
    van der Velde M; Baruth B; Bussay A; Ceglar A; Garcia Condado S; Karetsos S; Lecerf R; Lopez R; Maiorano A; Nisini L; Seguini L; van den Berg M
    Sci Rep; 2018 Oct; 8(1):15420. PubMed ID: 30337571
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.