BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

301 related articles for article (PubMed ID: 28294224)

  • 1. Creation of a dual-porosity and dual-depth micromodel for the study of multiphase flow in complex porous media.
    Yun W; Ross CM; Roman S; Kovscek AR
    Lab Chip; 2017 Apr; 17(8):1462-1474. PubMed ID: 28294224
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dual-porosity micromodels for studying multiphase fluid flow in carbonate rocks.
    Wolf FG; Siebert DN; Carreño MNP; Lopes AT; Zabot AM; Surmas R
    Lab Chip; 2022 Nov; 22(23):4680-4692. PubMed ID: 36346381
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Real rock-microfluidic flow cell: A test bed for real-time in situ analysis of flow, transport, and reaction in a subsurface reactive transport environment.
    Singh R; Sivaguru M; Fried GA; Fouke BW; Sanford RA; Carrera M; Werth CJ
    J Contam Hydrol; 2017 Sep; 204():28-39. PubMed ID: 28802767
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Imaging and characterizing fluid invasion in micro-3D printed porous devices with variable surface wettability.
    Li H; Zhang T
    Soft Matter; 2019 Sep; 15(35):6978-6987. PubMed ID: 31432880
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Toward Reservoir-on-a-Chip: Fabricating Reservoir Micromodels by in Situ Growing Calcium Carbonate Nanocrystals in Microfluidic Channels.
    Wang W; Chang S; Gizzatov A
    ACS Appl Mater Interfaces; 2017 Aug; 9(34):29380-29386. PubMed ID: 28792207
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluation of the effects of porous media structure on mixing-controlled reactions using pore-scale modeling and micromodel experiments.
    Willingham TW; Werth CJ; Valocchi AJ
    Environ Sci Technol; 2008 May; 42(9):3185-93. PubMed ID: 18522092
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A 2.5-D glass micromodel for investigation of multi-phase flow in porous media.
    Xu K; Liang T; Zhu P; Qi P; Lu J; Huh C; Balhoff M
    Lab Chip; 2017 Feb; 17(4):640-646. PubMed ID: 28157240
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Review of Microfluidic Devices and Imaging Techniques for Fluid Flow Study in Porous Geomaterials.
    Jahanbakhsh A; Wlodarczyk KL; Hand DP; Maier RRJ; Maroto-Valer MM
    Sensors (Basel); 2020 Jul; 20(14):. PubMed ID: 32698501
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fabrication of a 3D Multi-Depth Reservoir Micromodel in Borosilicate Glass Using Femtosecond Laser Material Processing.
    Owusu-Ansah E; Dalton C
    Micromachines (Basel); 2020 Dec; 11(12):. PubMed ID: 33291290
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fabrication and verification of a glass-silicon-glass micro-/nanofluidic model for investigating multi-phase flow in shale-like unconventional dual-porosity tight porous media.
    Zhang Y; Zhou C; Qu C; Wei M; He X; Bai B
    Lab Chip; 2019 Dec; 19(24):4071-4082. PubMed ID: 31702750
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Real structure micromodels based on reservoir rocks for enhanced oil recovery (EOR) applications.
    Gaol CL; Wegner J; Ganzer L
    Lab Chip; 2020 Jun; 20(12):2197-2208. PubMed ID: 32426764
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of liquid layers and distribution patterns on three-phase saturation and relative permeability relationships: a micromodel study.
    Tsai JP; Chang LC; Hsu SY; Shan HY
    Environ Sci Pollut Res Int; 2017 Dec; 24(35):26927-26939. PubMed ID: 26150292
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pore geometry control of apparent wetting in porous media.
    Rabbani HS; Zhao B; Juanes R; Shokri N
    Sci Rep; 2018 Oct; 8(1):15729. PubMed ID: 30356141
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Three-dimensional mixed-wet random pore-scale network modeling of two- and three-phase flow in porous media. I. Model description.
    Piri M; Blunt MJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Feb; 71(2 Pt 2):026301. PubMed ID: 15783413
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of pore-scale heterogeneity and transverse mixing on bacterial growth in porous media.
    Zhang C; Kang Q; Wang X; Zilles JL; Müller RH; Werth CJ
    Environ Sci Technol; 2010 Apr; 44(8):3085-92. PubMed ID: 20192171
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pore-scale studies of spontaneous imbibition into oil-saturated porous media.
    Hatiboglu CU; Babadagli T
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Jun; 77(6 Pt 2):066311. PubMed ID: 18643375
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microfluidic Model Porous Media: Fabrication and Applications.
    Anbari A; Chien HT; Datta SS; Deng W; Weitz DA; Fan J
    Small; 2018 May; 14(18):e1703575. PubMed ID: 29527809
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Experimental and modeling study of Newtonian and non-Newtonian fluid flow in pore network micromodels.
    Perrin CL; Tardy PM; Sorbie KS; Crawshaw JC
    J Colloid Interface Sci; 2006 Mar; 295(2):542-50. PubMed ID: 16219318
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Metabolism-Induced CaCO3 Biomineralization During Reactive Transport in a Micromodel: Implications for Porosity Alteration.
    Singh R; Yoon H; Sanford RA; Katz L; Fouke BW; Werth CJ
    Environ Sci Technol; 2015 Oct; 49(20):12094-104. PubMed ID: 26348257
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Etched glass micromodel for laboratory simulation of NAPL recovery mechanisms by surfactant solutions in fractured rock.
    Martel R; Portois C; Robert T; Uyeda M
    J Contam Hydrol; 2019 Dec; 227():103550. PubMed ID: 31493908
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.