BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 28294482)

  • 1. Next-Generation Polymer Shells for Inorganic Nanoparticles are Highly Compact, Ultra-Dense, and Long-Lasting Cyclic Brushes.
    Morgese G; Shirmardi Shaghasemi B; Causin V; Zenobi-Wong M; Ramakrishna SN; Reimhult E; Benetti EM
    Angew Chem Int Ed Engl; 2017 Apr; 56(16):4507-4511. PubMed ID: 28294482
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Polymer Topology Determines the Formation of Protein Corona on Core-Shell Nanoparticles.
    Schroffenegger M; Leitner NS; Morgese G; Ramakrishna SN; Willinger M; Benetti EM; Reimhult E
    ACS Nano; 2020 Oct; 14(10):12708-12718. PubMed ID: 32865993
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Topological Polymer Chemistry Enters Surface Science: Linear versus Cyclic Polymer Brushes.
    Morgese G; Trachsel L; Romio M; Divandari M; Ramakrishna SN; Benetti EM
    Angew Chem Int Ed Engl; 2016 Dec; 55(50):15583-15588. PubMed ID: 27775203
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Stealth Nanoparticles Grafted with Dense Polymer Brushes Display Adsorption of Serum Protein Investigated by Isothermal Titration Calorimetry.
    Gal N; Schroffenegger M; Reimhult E
    J Phys Chem B; 2018 Jun; 122(22):5820-5834. PubMed ID: 29726682
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Thermoresponsive Nanoparticles with Cyclic-Polymer-Grafted Shells Are More Stable than with Linear-Polymer-Grafted Shells: Effect of Polymer Topology, Molecular Weight, and Core Size.
    Willinger M; Reimhult E
    J Phys Chem B; 2021 Jul; 125(25):7009-7023. PubMed ID: 34156854
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Surface Density Variation within Cyclic Polymer Brushes Reveals Topology Effects on Their Nanotribological and Biopassive Properties.
    Divandari M; Trachsel L; Yan W; Rosenboom JG; Spencer ND; Zenobi-Wong M; Morgese G; Ramakrishna SN; Benetti EM
    ACS Macro Lett; 2018 Dec; 7(12):1455-1460. PubMed ID: 35651229
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Polymer Brushes on Nanoparticles for Controlling the Interaction with Protein-Rich Physiological Media.
    Pavón C; Benetti EM; Lorandi F
    Langmuir; 2024 Jun; 40(23):11843-11857. PubMed ID: 38787578
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enantiomeric separation by microchip electrophoresis using bovine serum albumin conjugated magnetic core-shell Fe3 O4 @Au nanocomposites as stationary phase.
    Liang RP; Wang XN; Wang L; Qiu JD
    Electrophoresis; 2014 Oct; 35(19):2824-32. PubMed ID: 25042461
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Polymer Brush-Grafted Nanoparticles Preferentially Interact with Opsonins and Albumin.
    Leitner NS; Schroffenegger M; Reimhult E
    ACS Appl Bio Mater; 2021 Jan; 4(1):795-806. PubMed ID: 33490885
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Thermoresponsive Core-Shell Nanoparticles: Does Core Size Matter?
    Schroffenegger M; Reimhult E
    Materials (Basel); 2018 Sep; 11(9):. PubMed ID: 30205481
    [TBL] [Abstract][Full Text] [Related]  

  • 11. PEG-stabilized core-shell nanoparticles: impact of linear versus dendritic polymer shell architecture on colloidal properties and the reversibility of temperature-induced aggregation.
    Gillich T; Acikgöz C; Isa L; Schlüter AD; Spencer ND; Textor M
    ACS Nano; 2013 Jan; 7(1):316-29. PubMed ID: 23214719
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Design Principles for Thermoresponsive Core-Shell Nanoparticles: Controlling Thermal Transitions by Brush Morphology.
    Reimhult E; Schroffenegger M; Lassenberger A
    Langmuir; 2019 Jun; 35(22):7092-7104. PubMed ID: 31035760
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Colloidal interactions of inorganic nanoparticles grafted with zwitterionic polymer brushes and gels by surface-mediated seeded polymerization.
    An S; Choi SK; Cho JW; Kim HT; Kim JW
    Macromol Rapid Commun; 2014 Aug; 35(15):1356-61. PubMed ID: 24840728
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bimodal surface ligand engineering: the key to tunable nanocomposites.
    Li Y; Tao P; Viswanath A; Benicewicz BC; Schadler LS
    Langmuir; 2013 Jan; 29(4):1211-20. PubMed ID: 23092225
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Plasmonic and colloidal stability behaviours of Au-acrylic core-shell nanoparticles with thin pH-responsive shells.
    Wu S; Zhu M; Lian Q; Lu D; Spencer B; Adlam DJ; Hoyland JA; Volk K; Karg M; Saunders BR
    Nanoscale; 2018 Oct; 10(39):18565-18575. PubMed ID: 30259044
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Surface interaction forces of cellulose nanocrystals grafted with thermoresponsive polymer brushes.
    Zoppe JO; Osterberg M; Venditti RA; Laine J; Rojas OJ
    Biomacromolecules; 2011 Jul; 12(7):2788-96. PubMed ID: 21648448
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Melt-grafting for the synthesis of core-shell nanoparticles with ultra-high dispersant density.
    Zirbs R; Lassenberger A; Vonderhaid I; Kurzhals S; Reimhult E
    Nanoscale; 2015 Jul; 7(25):11216-25. PubMed ID: 26061616
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mixing Poly(ethylene glycol) and Poly(2-alkyl-2-oxazoline)s Enhances Hydration and Viscoelasticity of Polymer Brushes and Determines Their Nanotribological and Antifouling Properties.
    Morgese G; Gombert Y; Ramakrishna SN; Benetti EM
    ACS Appl Mater Interfaces; 2018 Dec; 10(48):41839-41848. PubMed ID: 30395432
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Gold nanoparticles endowed with low-temperature colloidal stability by cyclic polyethylene glycol in ethanol.
    Aboudzadeh MA; Kruse J; Sanromán Iglesias M; Cangialosi D; Alegria A; Grzelczak M; Barroso-Bujans F
    Soft Matter; 2021 Sep; 17(33):7792-7801. PubMed ID: 34368823
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Anisotropic Self-Assembly of Hairy Inorganic Nanoparticles.
    Yi C; Zhang S; Webb KT; Nie Z
    Acc Chem Res; 2017 Jan; 50(1):12-21. PubMed ID: 27997119
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.