These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
93 related articles for article (PubMed ID: 28294483)
1. The detection and quantification of Bacillus thuringiensis spores from soil and swabs using quantitative PCR as a model system for routine diagnostics of Bacillus anthracis. Sedlackova V; Dziedzinska R; Babak V; Kralik P J Appl Microbiol; 2017 Jul; 123(1):116-123. PubMed ID: 28294483 [TBL] [Abstract][Full Text] [Related]
2. An evaluation of commercial DNA extraction kits for the isolation of bacterial spore DNA from soil. Dineen SM; Aranda R; Anders DL; Robertson JM J Appl Microbiol; 2010 Dec; 109(6):1886-96. PubMed ID: 20666869 [TBL] [Abstract][Full Text] [Related]
3. Detection of low numbers of Bacillus anthracis spores in three soils using five commercial DNA extraction methods with and without an enrichment step. Gulledge JS; Luna VA; Luna AJ; Zartman R; Cannons AC J Appl Microbiol; 2010 Nov; 109(5):1509-20. PubMed ID: 20553343 [TBL] [Abstract][Full Text] [Related]
4. Evaluation of five commercial nucleic acid extraction kits for their ability to inactivate Bacillus anthracis spores and comparison of DNA yields from spores and spiked environmental samples. Dauphin LA; Moser BD; Bowen MD J Microbiol Methods; 2009 Jan; 76(1):30-7. PubMed ID: 18824041 [TBL] [Abstract][Full Text] [Related]
5. Comparison of four commercial DNA extraction kits for the recovery of Bacillus spp. spore DNA from spiked powder samples. Mölsä M; Kalin-Mänttäri L; Tonteri E; Hemmilä H; Nikkari S J Microbiol Methods; 2016 Sep; 128():69-73. PubMed ID: 27435532 [TBL] [Abstract][Full Text] [Related]
6. Comparative evaluation of eleven commercial DNA extraction kits for real-time PCR detection of Bacillus anthracis spores in spiked dairy samples. Mertens K; Freund L; Schmoock G; Hänsel C; Melzer F; Elschner MC Int J Food Microbiol; 2014 Jan; 170():29-37. PubMed ID: 24291177 [TBL] [Abstract][Full Text] [Related]
7. National validation study of a swab protocol for the recovery of Bacillus anthracis spores from surfaces. Hodges LR; Rose LJ; O'Connell H; Arduino MJ J Microbiol Methods; 2010 May; 81(2):141-6. PubMed ID: 20193714 [TBL] [Abstract][Full Text] [Related]
8. Germination and persistence of Bacillus anthracis and Bacillus thuringiensis in soil microcosms. Bishop AH J Appl Microbiol; 2014 Nov; 117(5):1274-82. PubMed ID: 25099131 [TBL] [Abstract][Full Text] [Related]
9. Evaluation of a Highly Efficient DNA Extraction Method for Knüpfer M; Braun P; Baumann K; Rehn A; Antwerpen M; Grass G; Wölfel AR Microorganisms; 2020 May; 8(5):. PubMed ID: 32443768 [TBL] [Abstract][Full Text] [Related]
10. Evaluation of DNA extraction methods for Bacillus anthracis spores isolated from spiked food samples. Thomas MC; Shields MJ; Hahn KR; Janzen TW; Goji N; Amoako KK J Appl Microbiol; 2013 Jul; 115(1):156-62. PubMed ID: 23560745 [TBL] [Abstract][Full Text] [Related]
11. Comparison of sampling methods to recover germinated Bacillus anthracis and Bacillus thuringiensis endospores from surface coupons. Mott TM; Shoe JL; Hunter M; Woodson AM; Fritts KA; Klimko CP; Quirk AV; Welkos SL; Cote CK J Appl Microbiol; 2017 May; 122(5):1219-1232. PubMed ID: 28191745 [TBL] [Abstract][Full Text] [Related]
12. A real-time PCR method to quantify spores carrying the Bacillus thuringiensis var. israelensis cry4Aa and cry4Ba genes in soil. Guidi V; De Respinis S; Benagli C; Lüthy P; Tonolla M J Appl Microbiol; 2010 Oct; 109(4):1209-17. PubMed ID: 20477894 [TBL] [Abstract][Full Text] [Related]
13. Comparison of false-negative rates and limits of detection following macrofoam-swab sampling of Bacillus anthracis surrogates via Rapid Viability PCR and plate culture. Hutchison JR; Piepel GF; Amidan BG; Hess BM; Sydor MA; Deatherage Kaiser BL J Appl Microbiol; 2018 May; 124(5):1092-1106. PubMed ID: 29356220 [TBL] [Abstract][Full Text] [Related]
14. Bacillus thuringiensis HD-1 Cry- : development of a safe, non-insecticidal simulant for Bacillus anthracis. Bishop AH; Robinson CV J Appl Microbiol; 2014 Sep; 117(3):654-62. PubMed ID: 24903218 [TBL] [Abstract][Full Text] [Related]
15. Wet and dry density of Bacillus anthracis and other Bacillus species. Carrera M; Zandomeni RO; Sagripanti JL J Appl Microbiol; 2008 Jul; 105(1):68-77. PubMed ID: 18298528 [TBL] [Abstract][Full Text] [Related]
16. Most-probable-number rapid viability PCR method to detect viable spores of Bacillus anthracis in swab samples. Létant SE; Kane SR; Murphy GA; Alfaro TM; Hodges LR; Rose LJ; Raber E J Microbiol Methods; 2010 May; 81(2):200-2. PubMed ID: 20193716 [TBL] [Abstract][Full Text] [Related]
17. Mechanism of killing of spores of Bacillus anthracis in a high-temperature gas environment, and analysis of DNA damage generated by various decontamination treatments of spores of Bacillus anthracis, Bacillus subtilis and Bacillus thuringiensis. Setlow B; Parish S; Zhang P; Li YQ; Neely WC; Setlow P J Appl Microbiol; 2014 Apr; 116(4):805-14. PubMed ID: 24344920 [TBL] [Abstract][Full Text] [Related]
18. Comparison of commercial DNA extraction kits for isolation and purification of bacterial and eukaryotic DNA from PAH-contaminated soils. Mahmoudi N; Slater GF; Fulthorpe RR Can J Microbiol; 2011 Aug; 57(8):623-8. PubMed ID: 21815819 [TBL] [Abstract][Full Text] [Related]
19. Hot, humid air decontamination of a C-130 aircraft contaminated with spores of two acrystalliferous Bacillus thuringiensis strains, surrogates for Bacillus anthracis. Buhr TL; Young AA; Bensman M; Minter ZA; Kennihan NL; Johnson CA; Bohmke MD; Borgers-Klonkowski E; Osborn EB; Avila SD; Theys AM; Jackson PJ J Appl Microbiol; 2016 Apr; 120(4):1074-84. PubMed ID: 26786717 [TBL] [Abstract][Full Text] [Related]