These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
248 related articles for article (PubMed ID: 28294521)
1. Thiol-based copper handling by the copper chaperone Atox1. Hatori Y; Inouye S; Akagi R IUBMB Life; 2017 Apr; 69(4):246-254. PubMed ID: 28294521 [TBL] [Abstract][Full Text] [Related]
2. Redox sulfur chemistry of the copper chaperone Atox1 is regulated by the enzyme glutaredoxin 1, the reduction potential of the glutathione couple GSSG/2GSH and the availability of Cu(I). Brose J; La Fontaine S; Wedd AG; Xiao Z Metallomics; 2014 Apr; 6(4):793-808. PubMed ID: 24522867 [TBL] [Abstract][Full Text] [Related]
3. Oxidation of Human Copper Chaperone Atox1 and Disulfide Bond Cleavage by Cisplatin and Glutathione. Nardella MI; Rosato A; Belviso BD; Caliandro R; Natile G; Arnesano F Int J Mol Sci; 2019 Sep; 20(18):. PubMed ID: 31500118 [TBL] [Abstract][Full Text] [Related]
4. An expanding range of functions for the copper chaperone/antioxidant protein Atox1. Hatori Y; Lutsenko S Antioxid Redox Signal; 2013 Sep; 19(9):945-57. PubMed ID: 23249252 [TBL] [Abstract][Full Text] [Related]
5. Copper chaperone antioxidant 1: multiple roles and a potential therapeutic target. Yang D; Xiao P; Qiu B; Yu HF; Teng CB J Mol Med (Berl); 2023 May; 101(5):527-542. PubMed ID: 37017692 [TBL] [Abstract][Full Text] [Related]
6. Copper Transport Protein Antioxidant-1 Promotes Inflammatory Neovascularization via Chaperone and Transcription Factor Function. Chen GF; Sudhahar V; Youn SW; Das A; Cho J; Kamiya T; Urao N; McKinney RD; Surenkhuu B; Hamakubo T; Iwanari H; Li S; Christman JW; Shantikumar S; Angelini GD; Emanueli C; Ushio-Fukai M; Fukai T Sci Rep; 2015 Oct; 5():14780. PubMed ID: 26437801 [TBL] [Abstract][Full Text] [Related]
7. Identification of New Potential Interaction Partners for Human Cytoplasmic Copper Chaperone Atox1: Roles in Gene Regulation? Öhrvik H; Wittung-Stafshede P Int J Mol Sci; 2015 Jul; 16(8):16728-39. PubMed ID: 26213915 [TBL] [Abstract][Full Text] [Related]
8. Functional partnership of the copper export machinery and glutathione balance in human cells. Hatori Y; Clasen S; Hasan NM; Barry AN; Lutsenko S J Biol Chem; 2012 Aug; 287(32):26678-87. PubMed ID: 22648419 [TBL] [Abstract][Full Text] [Related]
9. Knockdown of copper chaperone antioxidant-1 by RNA interference inhibits copper-stimulated proliferation of non-small cell lung carcinoma cells. Cai H; Peng F Oncol Rep; 2013 Jul; 30(1):269-75. PubMed ID: 23624903 [TBL] [Abstract][Full Text] [Related]
10. Kinetic analysis of the interaction of the copper chaperone Atox1 with the metal binding sites of the Menkes protein. Strausak D; Howie MK; Firth SD; Schlicksupp A; Pipkorn R; Multhaup G; Mercer JF J Biol Chem; 2003 Jun; 278(23):20821-7. PubMed ID: 12679332 [TBL] [Abstract][Full Text] [Related]
11. Conserved residues modulate copper release in human copper chaperone Atox1. Hussain F; Olson JS; Wittung-Stafshede P Proc Natl Acad Sci U S A; 2008 Aug; 105(32):11158-63. PubMed ID: 18685091 [TBL] [Abstract][Full Text] [Related]
12. ATOX1: a novel copper-responsive transcription factor in mammals? Muller PA; Klomp LW Int J Biochem Cell Biol; 2009 Jun; 41(6):1233-6. PubMed ID: 18761103 [TBL] [Abstract][Full Text] [Related]
13. In-silico analysis of novel p.(Gly14Ser) variant of ATOX1 gene: plausible role in modulating ATOX1-ATP7B interaction. Kumari N; Kumar A; Pal A; Thapa BR; Modi M; Prasad R Mol Biol Rep; 2019 Jun; 46(3):3307-3313. PubMed ID: 30980273 [TBL] [Abstract][Full Text] [Related]
14. The C-Terminus of Human Copper Importer Ctr1 Acts as a Binding Site and Transfers Copper to Atox1. Kahra D; Kovermann M; Wittung-Stafshede P Biophys J; 2016 Jan; 110(1):95-102. PubMed ID: 26745413 [TBL] [Abstract][Full Text] [Related]
15. Human cytoplasmic copper chaperones Atox1 and CCS exchange copper ions in vitro. Petzoldt S; Kahra D; Kovermann M; Dingeldein AP; Niemiec MS; Ådén J; Wittung-Stafshede P Biometals; 2015 Jun; 28(3):577-85. PubMed ID: 25673218 [TBL] [Abstract][Full Text] [Related]
16. Cisplatin binds human copper chaperone Atox1 and promotes unfolding in vitro. Palm ME; Weise CF; Lundin C; Wingsle G; Nygren Y; Björn E; Naredi P; Wolf-Watz M; Wittung-Stafshede P Proc Natl Acad Sci U S A; 2011 Apr; 108(17):6951-6. PubMed ID: 21482801 [TBL] [Abstract][Full Text] [Related]
17. Neuronal differentiation is associated with a redox-regulated increase of copper flow to the secretory pathway. Hatori Y; Yan Y; Schmidt K; Furukawa E; Hasan NM; Yang N; Liu CN; Sockanathan S; Lutsenko S Nat Commun; 2016 Feb; 7():10640. PubMed ID: 26879543 [TBL] [Abstract][Full Text] [Related]
18. Atox1 contains positive residues that mediate membrane association and aid subsequent copper loading. Flores AG; Unger VM J Membr Biol; 2013 Dec; 246(12):903-13. PubMed ID: 24036897 [TBL] [Abstract][Full Text] [Related]
19. Impact of cofactor on stability of bacterial (CopZ) and human (Atox1) copper chaperones. Hussain F; Wittung-Stafshede P Biochim Biophys Acta; 2007 Oct; 1774(10):1316-22. PubMed ID: 17881304 [TBL] [Abstract][Full Text] [Related]
20. Novel role of antioxidant-1 (Atox1) as a copper-dependent transcription factor involved in cell proliferation. Itoh S; Kim HW; Nakagawa O; Ozumi K; Lessner SM; Aoki H; Akram K; McKinney RD; Ushio-Fukai M; Fukai T J Biol Chem; 2008 Apr; 283(14):9157-67. PubMed ID: 18245776 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]