These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 28294574)

  • 1. Phase-field boundary conditions for the voxel finite cell method: Surface-free stress analysis of CT-based bone structures.
    Nguyen L; Stoter S; Baum T; Kirschke J; Ruess M; Yosibash Z; Schillinger D
    Int J Numer Method Biomed Eng; 2017 Dec; 33(12):. PubMed ID: 28294574
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Selecting boundary conditions in physiological strain analysis of the femur: Balanced loads, inertia relief method and follower load.
    Heyland M; Trepczynski A; Duda GN; Zehn M; Schaser KD; Märdian S
    Med Eng Phys; 2015 Dec; 37(12):1180-5. PubMed ID: 26521092
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Finite-element modeling of bones from CT data: sensitivity to geometry and material uncertainties.
    Taddei F; Martelli S; Reggiani B; Cristofolini L; Viceconti M
    IEEE Trans Biomed Eng; 2006 Nov; 53(11):2194-200. PubMed ID: 17073324
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A voxel-based formulation for contact finite element analysis.
    Grosland NM; Brown TD
    Comput Methods Biomech Biomed Engin; 2002 Feb; 5(1):21-32. PubMed ID: 12186731
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A new method for the automatic mesh generation of bone segments from CT data.
    Viceconti M; Zannoni C; Testi D; Cappello A
    J Med Eng Technol; 1999; 23(2):77-81. PubMed ID: 10356679
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Supervised learning for bone shape and cortical thickness estimation from CT images for finite element analysis.
    Chandran V; Maquer G; Gerig T; Zysset P; Reyes M
    Med Image Anal; 2019 Feb; 52():42-55. PubMed ID: 30471462
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The use of sparse CT datasets for auto-generating accurate FE models of the femur and pelvis.
    Shim VB; Pitto RP; Streicher RM; Hunter PJ; Anderson IA
    J Biomech; 2007; 40(1):26-35. PubMed ID: 16427645
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Subject-specific finite element simulation of the human femur considering inhomogeneous material properties: a straightforward method and convergence study.
    Hölzer A; Schröder C; Woiczinski M; Sadoghi P; Scharpf A; Heimkes B; Jansson V
    Comput Methods Programs Biomed; 2013 Apr; 110(1):82-8. PubMed ID: 23084242
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The material mapping strategy influences the accuracy of CT-based finite element models of bones: an evaluation against experimental measurements.
    Taddei F; Schileo E; Helgason B; Cristofolini L; Viceconti M
    Med Eng Phys; 2007 Nov; 29(9):973-9. PubMed ID: 17169598
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An energy-based equilibrium contact angle boundary condition on jagged surfaces for phase-field methods.
    Frank F; Liu C; Scanziani A; Alpak FO; Riviere B
    J Colloid Interface Sci; 2018 Aug; 523():282-291. PubMed ID: 29680167
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Automatic generation of accurate subject-specific bone finite element models to be used in clinical studies.
    Viceconti M; Davinelli M; Taddei F; Cappello A
    J Biomech; 2004 Oct; 37(10):1597-605. PubMed ID: 15336935
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Semiautomated finite element mesh generation methods for a long bone.
    Pfeiler TW; Lalush DS; Loboa EG
    Comput Methods Programs Biomed; 2007 Mar; 85(3):196-202. PubMed ID: 17207888
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison of geometry-based and CT voxel-based finite element modelling and experimental validation.
    Lengsfeld M; Schmitt J; Alter P; Kaminsky J; Leppek R
    Med Eng Phys; 1998 Oct; 20(7):515-22. PubMed ID: 9832027
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effect of in situ/in vitro three-dimensional quantitative computed tomography image voxel size on the finite element model of human vertebral cancellous bone.
    Lu Y; Engelke K; Glueer CC; Morlock MM; Huber G
    Proc Inst Mech Eng H; 2014 Nov; 228(11):1208-13. PubMed ID: 25500865
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Robust variational segmentation of 3D bone CT data with thin cartilage interfaces.
    Gangwar T; Calder J; Takahashi T; Bechtold JE; Schillinger D
    Med Image Anal; 2018 Jul; 47():95-110. PubMed ID: 29702415
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A CT-based high-order finite element analysis of the human proximal femur compared to in-vitro experiments.
    Yosibash Z; Padan R; Joskowicz L; Milgrom C
    J Biomech Eng; 2007 Jun; 129(3):297-309. PubMed ID: 17536896
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A comparative study on different methods of automatic mesh generation of human femurs.
    Viceconti M; Bellingeri L; Cristofolini L; Toni A
    Med Eng Phys; 1998 Jan; 20(1):1-10. PubMed ID: 9664280
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Prediction of strength and strain of the proximal femur by a CT-based finite element method.
    Bessho M; Ohnishi I; Matsuyama J; Matsumoto T; Imai K; Nakamura K
    J Biomech; 2007; 40(8):1745-53. PubMed ID: 17034798
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The impact of voxel size-based inaccuracies on the mechanical behavior of thin bone structures.
    Maloul A; Fialkov J; Whyne C
    Ann Biomed Eng; 2011 Mar; 39(3):1092-100. PubMed ID: 21120697
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of boundary conditions, impact loading and hydraulic stiffening on femoral fracture strength.
    Haider IT; Speirs AD; Frei H
    J Biomech; 2013 Sep; 46(13):2115-21. PubMed ID: 23906770
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.