These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 28294575)

  • 1. Variation in adult stress resistance does not explain vulnerability to climate change in copper butterflies.
    Klockmann M; Wallmeyer L; Fischer K
    Insect Sci; 2018 Oct; 25(5):894-904. PubMed ID: 28294575
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Heat resistance throughout ontogeny: body size constrains thermal tolerance.
    Klockmann M; Günter F; Fischer K
    Glob Chang Biol; 2017 Feb; 23(2):686-696. PubMed ID: 27371939
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of temperature and drought on early life stages in three species of butterflies: Mortality of early life stages as a key determinant of vulnerability to climate change?
    Klockmann M; Fischer K
    Ecol Evol; 2017 Dec; 7(24):10871-10879. PubMed ID: 29299265
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phenological synchrony between a butterfly and its host plants: Experimental test of effects of spring temperature.
    Posledovich D; Toftegaard T; Wiklund C; Ehrlén J; Gotthard K
    J Anim Ecol; 2018 Jan; 87(1):150-161. PubMed ID: 29048758
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Environmental effects on temperature stress resistance in the tropical butterfly Bicyclus anynana.
    Fischer K; Dierks A; Franke K; Geister TL; Liszka M; Winter S; Pflicke C
    PLoS One; 2010 Dec; 5(12):e15284. PubMed ID: 21187968
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Exploring the universal ecological responses to climate change in a univoltine butterfly.
    Fenberg PB; Self A; Stewart JR; Wilson RJ; Brooks SJ
    J Anim Ecol; 2016 May; 85(3):739-48. PubMed ID: 26876243
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Flowering time of butterfly nectar food plants is more sensitive to temperature than the timing of butterfly adult flight.
    Kharouba HM; Vellend M
    J Anim Ecol; 2015 Sep; 84(5):1311-21. PubMed ID: 25823582
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Carried over: Heat stress in the egg stage reduces subsequent performance in a butterfly.
    Klockmann M; Kleinschmidt F; Fischer K
    PLoS One; 2017; 12(7):e0180968. PubMed ID: 28708887
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phenotypic plasticity in thermal tolerance in the Glanville fritillary butterfly.
    Luo S; Chong Wong S; Xu C; Hanski I; Wang R; Lehtonen R
    J Therm Biol; 2014 May; 42():33-9. PubMed ID: 24802146
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Role of larval host plants in the climate-driven range expansion of the butterfly Polygonia c-album.
    Braschler B; Hill JK
    J Anim Ecol; 2007 May; 76(3):415-23. PubMed ID: 17439459
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sensitivity to thermal extremes in Australian Drosophila implies similar impacts of climate change on the distribution of widespread and tropical species.
    Overgaard J; Kearney MR; Hoffmann AA
    Glob Chang Biol; 2014 Jun; 20(6):1738-50. PubMed ID: 24549716
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Acclimatization and Adaptive Capacity of Marine Species in a Changing Ocean.
    Foo SA; Byrne M
    Adv Mar Biol; 2016; 74():69-116. PubMed ID: 27573050
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Complex life cycles and the responses of insects to climate change.
    Kingsolver JG; Woods HA; Buckley LB; Potter KA; MacLean HJ; Higgins JK
    Integr Comp Biol; 2011 Nov; 51(5):719-32. PubMed ID: 21724617
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Intraspecific variation in thermal tolerance and acclimation capacity in brook trout (Salvelinus fontinalis): physiological implications for climate change.
    Stitt BC; Burness G; Burgomaster KA; Currie S; McDermid JL; Wilson CC
    Physiol Biochem Zool; 2014; 87(1):15-29. PubMed ID: 24457918
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Vulnerability to climate warming of Liolaemus pictus (Squamata, Liolaemidae), a lizard from the cold temperate climate in Patagonia, Argentina.
    Kubisch EL; Fernández JB; Ibargüengoytía NR
    J Comp Physiol B; 2016 Feb; 186(2):243-53. PubMed ID: 26679700
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The roles of acclimation and behaviour in buffering climate change impacts along elevational gradients.
    Enriquez-Urzelai U; Tingley R; Kearney MR; Sacco M; Palacio AS; Tejedo M; Nicieza AG
    J Anim Ecol; 2020 Jul; 89(7):1722-1734. PubMed ID: 32221971
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Each life stage matters: the importance of assessing the response to climate change over the complete life cycle in butterflies.
    Radchuk V; Turlure C; Schtickzelle N
    J Anim Ecol; 2013 Jan; 82(1):275-85. PubMed ID: 22924795
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Local adaptation in thermal tolerance for a tropical butterfly across ecotone and rainforest habitats.
    Dongmo MAK; Hanna R; Smith TB; Fiaboe KKM; Fomena A; Bonebrake TC
    Biol Open; 2021 Apr; 10(4):. PubMed ID: 34416009
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evolution of plasticity and adaptive responses to climate change along climate gradients.
    Kingsolver JG; Buckley LB
    Proc Biol Sci; 2017 Aug; 284(1860):. PubMed ID: 28814652
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The response of two butterfly species to climatic variation at the edge of their range and the implications for poleward range shifts.
    Hellmann JJ; Pelini SL; Prior KM; Dzurisin JD
    Oecologia; 2008 Oct; 157(4):583-92. PubMed ID: 18648857
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.