BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 28294979)

  • 1. Evaluation of Stability of Amylose Inclusion Complexes Depending on Guest Polymers and Their Application to Supramolecular Polymeric Materials.
    Tanaka T; Tsutsui A; Tanaka K; Yamamoto K; Kadokawa JI
    Biomolecules; 2017 Mar; 7(1):. PubMed ID: 28294979
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Difference in Macroscopic Morphologies of Amylosic Supramolecular Networks Depending on Guest Polymers in Vine-Twining Polymerization.
    Orio S; Shoji T; Yamamoto K; Kadokawa JI
    Polymers (Basel); 2018 Nov; 10(11):. PubMed ID: 30961202
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Preparation and Material Application of Amylose-Polymer Inclusion Complexes by Enzymatic Polymerization Approach.
    Orio S; Yamamoto K; Kadokawa JI
    Polymers (Basel); 2017 Dec; 9(12):. PubMed ID: 30966029
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Amylose's recognition of chirality in polylactides on formation of inclusion complexes in vine-twining polymerization.
    Kaneko Y; Ueno K; Yui T; Nakahara K; Kadokawa J
    Macromol Biosci; 2011 Oct; 11(10):1407-15. PubMed ID: 21830300
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Vine-twining polymerization: a new preparation method for well-defined supramolecules composed of amylose and synthetic polymers.
    Kaneko Y; Kadokawa J
    Chem Rec; 2005; 5(1):36-46. PubMed ID: 15806555
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Formation of Supramolecular Soft Materials from Amylosic Inclusion Complexes with Designed Guest Polymers Obtained by Vine-Twining Polymerization.
    Kadokawa JI; Yano K; Orio S; Yamamoto K
    ACS Omega; 2019 Apr; 4(4):6331-6338. PubMed ID: 31459773
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Architecture of amylose supramolecules in form of inclusion complexes by phosphorylase-catalyzed enzymatic polymerization.
    Kadokawa J
    Biomolecules; 2013 Jul; 3(3):369-85. PubMed ID: 24970172
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fabrication of Nanostructured Supramolecules through Helical Inclusion of Amylose toward Hydrophobic Polyester Guests, Biomimetically through Vine-Twining Polymerization Process.
    Kadokawa JI
    Biomimetics (Basel); 2023 Nov; 8(7):. PubMed ID: 37999157
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Amylose selectively includes one from a mixture of two resemblant polyethers in vine-twining polymerization.
    Kaneko Y; Beppu K; Kadokawa J
    Biomacromolecules; 2007 Oct; 8(10):2983-5. PubMed ID: 17880135
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inclusion Complexes Between Polytetrahydrofuran-b-Amylose Block Copolymers and Polytetrahydrofuran Chains.
    Rachmawati R; Woortman AJ; Kumar K; Loos K
    Macromol Biosci; 2015 Jun; 15(6):812-28. PubMed ID: 25706353
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Vine-twining polymerization: amylose twines around polyethers to form amylose-polyether inclusion complexes.
    Kadokawa J; Kaneko Y; Nagase S; Takahashi T; Tagaya H
    Chemistry; 2002 Aug; 8(15):3321-6. PubMed ID: 12203312
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Preparation of polysaccharide supramolecular films by vine-twining polymerization approach.
    Kadokawa J; Nomura S; Hatanaka D; Yamamoto K
    Carbohydr Polym; 2013 Oct; 98(1):611-7. PubMed ID: 23987389
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Preparation of Amylose-Oligo[(
    Kadokawa JI; Wada Y; Yamamoto K
    Molecules; 2021 Apr; 26(9):. PubMed ID: 33946828
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tunable properties of inclusion complexes between amylose and polytetrahydrofuran.
    Rachmawati R; Woortman AJ; Loos K
    Macromol Biosci; 2013 Jun; 13(6):767-76. PubMed ID: 23610062
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Facile preparation method for inclusion complexes between amylose and polytetrahydrofurans.
    Rachmawati R; Woortman AJ; Loos K
    Biomacromolecules; 2013 Feb; 14(2):575-83. PubMed ID: 23317375
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Preparation of enzymatically recyclable hydrogels through the formation of inclusion complexes of amylose in a vine-twining polymerization.
    Kaneko Y; Fujisaki K; Kyutoku T; Furukawa H; Kadokawa J
    Chem Asian J; 2010 Jul; 5(7):1627-33. PubMed ID: 20480493
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fabrication of novel multilayered thin films based on inclusion complex formation between amylose derivatives and guest polymers.
    Kida T; Minabe T; Nakano S; Akashi M
    Langmuir; 2008 Sep; 24(17):9227-9. PubMed ID: 18686984
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Solvent-responsive behavior of inclusion complexes between amylose and polytetrahydrofuran.
    Rachmawati R; Woortman AJ; Loos K
    Macromol Biosci; 2014 Jan; 14(1):56-68. PubMed ID: 23996920
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In situ synthesis of amylose/single-walled carbon nanotubes supramolecular assembly.
    Yang L; Zhang B; Liang Y; Yang B; Kong T; Zhang LM
    Carbohydr Res; 2008 Sep; 343(14):2463-7. PubMed ID: 18653174
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Partially-methylated amyloses as effective hosts for inclusion complex formation with polymeric guests.
    Kida T; Minabe T; Okabe S; Akashi M
    Chem Commun (Camb); 2007 Apr; (15):1559-61. PubMed ID: 17406707
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.