BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

634 related articles for article (PubMed ID: 28295111)

  • 1. Orbitally driven low thermal conductivity of monolayer gallium nitride (GaN) with planar honeycomb structure: a comparative study.
    Qin Z; Qin G; Zuo X; Xiong Z; Hu M
    Nanoscale; 2017 Mar; 9(12):4295-4309. PubMed ID: 28295111
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nonmonotonic strain dependence of lattice thermal conductivity in monolayer SiC: a first-principles study.
    Guo SD; Dong J; Liu JT
    Phys Chem Chem Phys; 2018 Aug; 20(34):22038-22046. PubMed ID: 30112534
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Diverse anisotropy of phonon transport in two-dimensional group IV-VI compounds: A comparative study.
    Qin G; Qin Z; Fang WZ; Zhang LC; Yue SY; Yan QB; Hu M; Su G
    Nanoscale; 2016 Jun; 8(21):11306-19. PubMed ID: 27189263
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Thermal Conductivity of Wurtzite Zinc-Oxide from First-Principles Lattice Dynamics--a Comparative Study with Gallium Nitride.
    Wu X; Lee J; Varshney V; Wohlwend JL; Roy AK; Luo T
    Sci Rep; 2016 Mar; 6():22504. PubMed ID: 26928396
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Low thermal conductivity of monolayer ZnO and its anomalous temperature dependence.
    Wang H; Qin G; Li G; Wang Q; Hu M
    Phys Chem Chem Phys; 2017 May; 19(20):12882-12889. PubMed ID: 28474040
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Significantly suppressed thermal transport by doping In and Al atoms in gallium nitride.
    Qi C; Yu L; Zhu X; Li S; Du K; Qin Z; Qin G; Xiong Z
    Phys Chem Chem Phys; 2022 Sep; 24(35):21085-21093. PubMed ID: 36017798
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Thermal transport properties in monolayer group-IV binary compounds.
    Zhang QQ; Jia PZ; Chen XK; Zhou WX; Chen KQ
    J Phys Condens Matter; 2020 Jul; 32(30):305301. PubMed ID: 32197262
    [TBL] [Abstract][Full Text] [Related]  

  • 8. First-Principles Prediction of Ultralow Lattice Thermal Conductivity of Dumbbell Silicene: A Comparison with Low-Buckled Silicene.
    Peng B; Zhang H; Shao H; Xu Y; Zhang R; Lu H; Zhang DW; Zhu H
    ACS Appl Mater Interfaces; 2016 Aug; 8(32):20977-85. PubMed ID: 27460331
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High thermal conductivity driven by the unusual phonon relaxation time platform in 2D monolayer boron arsenide.
    Hu Y; Li D; Yin Y; Li S; Zhou H; Zhang G
    RSC Adv; 2020 Jun; 10(42):25305-25310. PubMed ID: 35517492
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The exceptionally high thermal conductivity after 'alloying' two-dimensional gallium nitride (GaN) and aluminum nitride (AlN).
    Wang H; Wei D; Duan J; Qin Z; Qin G; Yao Y; Hu M
    Nanotechnology; 2021 Mar; 32(13):135401. PubMed ID: 33296877
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of hydrogenation on the thermal conductivity of 2D gallium nitride.
    Cai X; Sun G; Xu Y; Ma J; Xu D
    Phys Chem Chem Phys; 2021 Oct; 23(39):22423-22429. PubMed ID: 34585691
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phonon stability and phonon transport of graphene-like borophene.
    Yin Y; Li D; Hu Y; Ding G; Zhou H; Zhang G
    Nanotechnology; 2020 Jul; 31(31):315709. PubMed ID: 32203947
    [TBL] [Abstract][Full Text] [Related]  

  • 13. First-principles study of thermal transport in nitrogenated holey graphene.
    Ouyang T; Xiao H; Tang C; Zhang X; Hu M; Zhong J
    Nanotechnology; 2017 Jan; 28(4):045709. PubMed ID: 27997371
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Born effective charge removed anomalous temperature dependence of lattice thermal conductivity in monolayer GeC.
    Guo SD; Guo XS; Dong J
    J Phys Condens Matter; 2019 Mar; 31(12):125701. PubMed ID: 30630139
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hydrogenation of Penta-Graphene Leads to Unexpected Large Improvement in Thermal Conductivity.
    Wu X; Varshney V; Lee J; Zhang T; Wohlwend JL; Roy AK; Luo T
    Nano Lett; 2016 Jun; 16(6):3925-35. PubMed ID: 27152879
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Superhigh out-of-plane piezoelectricity, low thermal conductivity and photocatalytic abilities in ultrathin 2D van der Waals heterostructures of boron monophosphide and gallium nitride.
    Mohanta MK; Rawat A; Dimple ; Jena N; Ahammed R; De Sarkar A
    Nanoscale; 2019 Nov; 11(45):21880-21890. PubMed ID: 31697290
    [TBL] [Abstract][Full Text] [Related]  

  • 17. External electric field driving the ultra-low thermal conductivity of silicene.
    Qin G; Qin Z; Yue SY; Yan QB; Hu M
    Nanoscale; 2017 Jun; 9(21):7227-7234. PubMed ID: 28513696
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Anisotropic intrinsic lattice thermal conductivity of phosphorene from first principles.
    Qin G; Yan QB; Qin Z; Yue SY; Hu M; Su G
    Phys Chem Chem Phys; 2015 Feb; 17(7):4854-8. PubMed ID: 25594447
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Disparate Strain Dependent Thermal Conductivity of Two-dimensional Penta-Structures.
    Liu H; Qin G; Lin Y; Hu M
    Nano Lett; 2016 Jun; 16(6):3831-42. PubMed ID: 27228130
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The conflicting role of buckled structure in phonon transport of 2D group-IV and group-V materials.
    Peng B; Zhang D; Zhang H; Shao H; Ni G; Zhu Y; Zhu H
    Nanoscale; 2017 Jun; 9(22):7397-7407. PubMed ID: 28318004
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 32.