These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

253 related articles for article (PubMed ID: 28295342)

  • 1. An information theory account of late frontoparietal ERP positivities in cognitive control.
    Barceló F; Cooper PS
    Psychophysiology; 2018 Mar; 55(3):. PubMed ID: 28295342
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Individual differences in aging and cognitive control modulate the neural indexes of context updating and maintenance during task switching.
    Adrover-Roig D; Barceló F
    Cortex; 2010 Apr; 46(4):434-50. PubMed ID: 19889406
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An information theoretical approach to task-switching: evidence from cognitive brain potentials in humans.
    Barceló F; Periáñez JA; Nyhus E
    Front Hum Neurosci; 2007; 1():13. PubMed ID: 18958226
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Updating sensory versus task representations during task-switching: insights from cognitive brain potentials in humans.
    Periáñez JA; Barceló F
    Neuropsychologia; 2009 Mar; 47(4):1160-72. PubMed ID: 19350711
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dynamic low frequency EEG phase synchronization patterns during proactive control of task switching.
    López ME; Pusil S; Pereda E; Maestú F; Barceló F
    Neuroimage; 2019 Feb; 186():70-82. PubMed ID: 30394328
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Diversity of the P3 in the task-switching paradigm.
    Gajewski PD; Falkenstein M
    Brain Res; 2011 Sep; 1411():87-97. PubMed ID: 21803343
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Functional Dissociation of Latency-Variable, Stimulus- and Response-Locked Target P3 Sub-components in Task-Switching.
    Brydges CR; Barceló F
    Front Hum Neurosci; 2018; 12():60. PubMed ID: 29515383
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electrophysiological correlates of the cognitive control processes underpinning mixing and switching costs.
    Tarantino V; Mazzonetto I; Vallesi A
    Brain Res; 2016 Sep; 1646():160-173. PubMed ID: 27238463
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Contextually sensitive power changes across multiple frequency bands underpin cognitive control.
    Cooper PS; Darriba Á; Karayanidis F; Barceló F
    Neuroimage; 2016 May; 132():499-511. PubMed ID: 26975557
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Task switching and novelty processing activate a common neural network for cognitive control.
    Barcelo F; Escera C; Corral MJ; Periáñez JA
    J Cogn Neurosci; 2006 Oct; 18(10):1734-48. PubMed ID: 17014377
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dynamic Trial-by-Trial Recoding of Task-Set Representations in the Frontoparietal Cortex Mediates Behavioral Flexibility.
    Qiao L; Zhang L; Chen A; Egner T
    J Neurosci; 2017 Nov; 37(45):11037-11050. PubMed ID: 28972126
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fast Neural Dynamics of Proactive Cognitive Control in a Task-Switching Analogue of the Wisconsin Card Sorting Test.
    Gema Díaz-Blancat ; Juan García-Prieto ; Fernando Maestú ; Francisco Barceló
    Brain Topogr; 2018 May; 31(3):407-418. PubMed ID: 29124546
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cognitive flexibility and N2/P3 event-related brain potentials.
    Kopp B; Steinke A; Visalli A
    Sci Rep; 2020 Jun; 10(1):9859. PubMed ID: 32555267
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Task switching and bilingualism in young and older adults: A behavioral and electrophysiological investigation.
    López Zunini RA; Morrison C; Kousaie S; Taler V
    Neuropsychologia; 2019 Oct; 133():107186. PubMed ID: 31513809
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multisubject Decomposition of Event-related Positivities in Cognitive Control: Tackling Age-related Changes in Reactive Control.
    Enriquez-Geppert S; Barceló F
    Brain Topogr; 2018 Jan; 31(1):17-34. PubMed ID: 27522402
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Visuospatial information processing load and the ratio between parietal cue and target P3 amplitudes in the Attentional Network Test.
    Abramov DM; Pontes M; Pontes AT; Mourao-Junior CA; Vieira J; Quero Cunha C; Tamborino T; Galhanone PR; deAzevedo LC; Lazarev VV
    Neurosci Lett; 2017 Apr; 647():91-96. PubMed ID: 28336341
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Think differently: a brain orienting response to task novelty.
    Barceló F; Periáñez JA; Knight RT
    Neuroreport; 2002 Oct; 13(15):1887-92. PubMed ID: 12395085
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The spatial and temporal dynamics of anticipatory preparation and response inhibition in task-switching.
    Jamadar S; Hughes M; Fulham WR; Michie PT; Karayanidis F
    Neuroimage; 2010 May; 51(1):432-49. PubMed ID: 20123028
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Age-related changes in neural recruitment for cognitive control.
    Kopp B; Lange F; Howe J; Wessel K
    Brain Cogn; 2014 Mar; 85():209-19. PubMed ID: 24434022
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cueing effects on semantic and perceptual categorization: ERPs reveal differential effects of validity as a function of processing stage.
    Lai G; Mangels JA
    Neuropsychologia; 2007 May; 45(9):2038-50. PubMed ID: 17382975
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.