These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
626 related articles for article (PubMed ID: 28295393)
1. Diverse mechanisms of resistance to Pseudomonas syringae in a thousand natural accessions of Arabidopsis thaliana. Velásquez AC; Oney M; Huot B; Xu S; He SY New Phytol; 2017 Jun; 214(4):1673-1687. PubMed ID: 28295393 [TBL] [Abstract][Full Text] [Related]
2. Oligogalacturonides induce resistance in Arabidopsis thaliana by triggering salicylic acid and jasmonic acid pathways against Pst DC3000. Howlader P; Bose SK; Jia X; Zhang C; Wang W; Yin H Int J Biol Macromol; 2020 Dec; 164():4054-4064. PubMed ID: 32910959 [TBL] [Abstract][Full Text] [Related]
3. Involvement of the salicylic acid signaling pathway in the systemic resistance induced in Arabidopsis by plant growth-promoting fungus Fusarium equiseti GF19-1. Kojima H; Hossain MM; Kubota M; Hyakumachi M J Oleo Sci; 2013; 62(6):415-26. PubMed ID: 23728333 [TBL] [Abstract][Full Text] [Related]
4. The downy mildew effector proteins ATR1 and ATR13 promote disease susceptibility in Arabidopsis thaliana. Sohn KH; Lei R; Nemri A; Jones JD Plant Cell; 2007 Dec; 19(12):4077-90. PubMed ID: 18165328 [TBL] [Abstract][Full Text] [Related]
5. Heterologous expression of Chinese wild grapevine VqERFs in Arabidopsis thaliana enhance resistance to Pseudomonas syringae pv. tomato DC3000 and to Botrytis cinerea. Wang L; Liu W; Wang Y Plant Sci; 2020 Apr; 293():110421. PubMed ID: 32081269 [TBL] [Abstract][Full Text] [Related]
6. Multilayered Regulation of Ethylene Induction Plays a Positive Role in Arabidopsis Resistance against Pseudomonas syringae. Guan R; Su J; Meng X; Li S; Liu Y; Xu J; Zhang S Plant Physiol; 2015 Sep; 169(1):299-312. PubMed ID: 26265775 [TBL] [Abstract][Full Text] [Related]
7. Analyses of wrky18 wrky40 plants reveal critical roles of SA/EDS1 signaling and indole-glucosinolate biosynthesis for Golovinomyces orontii resistance and a loss-of resistance towards Pseudomonas syringae pv. tomato AvrRPS4. Schön M; Töller A; Diezel C; Roth C; Westphal L; Wiermer M; Somssich IE Mol Plant Microbe Interact; 2013 Jul; 26(7):758-67. PubMed ID: 23617415 [TBL] [Abstract][Full Text] [Related]
8. Enhanced Resistance of Nabi RBS; Rolly NK; Tayade R; Khan M; Shahid M; Yun BW Int J Mol Sci; 2021 Oct; 22(21):. PubMed ID: 34768971 [TBL] [Abstract][Full Text] [Related]
9. Proteomic Analysis of Lysine Acetylation and Succinylation to Investigate the Pathogenicity of Virulent Ding Y; Liu Y; Yang K; Zhao Y; Wen C; Yang Y; Zhang W Genes (Basel); 2024 Apr; 15(4):. PubMed ID: 38674433 [No Abstract] [Full Text] [Related]
10. A prominent role of the flagellin receptor FLAGELLIN-SENSING2 in mediating stomatal response to Pseudomonas syringae pv tomato DC3000 in Arabidopsis. Zeng W; He SY Plant Physiol; 2010 Jul; 153(3):1188-98. PubMed ID: 20457804 [TBL] [Abstract][Full Text] [Related]
11. IDL6-HAE/HSL2 impacts pectin degradation and resistance to Pseudomonas syringae pv tomato DC3000 in Arabidopsis leaves. Wang X; Hou S; Wu Q; Lin M; Acharya BR; Wu D; Zhang W Plant J; 2017 Jan; 89(2):250-263. PubMed ID: 27618493 [TBL] [Abstract][Full Text] [Related]
13. Chitosan Oligosaccharide Induces Resistance to Pseudomonas syringae pv. tomato DC3000 in Arabidopsis thaliana by Activating Both Salicylic Acid- and Jasmonic Acid-Mediated Pathways. Jia X; Zeng H; Wang W; Zhang F; Yin H Mol Plant Microbe Interact; 2018 Dec; 31(12):1271-1279. PubMed ID: 29869942 [TBL] [Abstract][Full Text] [Related]
14. The Arabidopsis ATAF1, a NAC transcription factor, is a negative regulator of defense responses against necrotrophic fungal and bacterial pathogens. Wang X; Basnayake BM; Zhang H; Li G; Li W; Virk N; Mengiste T; Song F Mol Plant Microbe Interact; 2009 Oct; 22(10):1227-38. PubMed ID: 19737096 [TBL] [Abstract][Full Text] [Related]
15. Dual impact of elevated temperature on plant defence and bacterial virulence in Arabidopsis. Huot B; Castroverde CDM; Velásquez AC; Hubbard E; Pulman JA; Yao J; Childs KL; Tsuda K; Montgomery BL; He SY Nat Commun; 2017 Nov; 8(1):1808. PubMed ID: 29180698 [TBL] [Abstract][Full Text] [Related]
16. Response of tobacco to the Pseudomonas syringae pv. Tomato DC3000 is mainly dependent on salicylic acid signaling pathway. Liu Y; Wang L; Cai G; Jiang S; Sun L; Li D FEMS Microbiol Lett; 2013 Jul; 344(1):77-85. PubMed ID: 23581479 [TBL] [Abstract][Full Text] [Related]
17. Genome-wide transcriptional analysis of the Arabidopsis thaliana interaction with the plant pathogen Pseudomonas syringae pv. tomato DC3000 and the human pathogen Escherichia coli O157:H7. Thilmony R; Underwood W; He SY Plant J; 2006 Apr; 46(1):34-53. PubMed ID: 16553894 [TBL] [Abstract][Full Text] [Related]
18. Arabidopsis phospholipase Dβ1 modulates defense responses to bacterial and fungal pathogens. Zhao J; Devaiah SP; Wang C; Li M; Welti R; Wang X New Phytol; 2013 Jul; 199(1):228-240. PubMed ID: 23577648 [TBL] [Abstract][Full Text] [Related]
19. The Arabidopsis lectin receptor kinase LecRK-V.5 represses stomatal immunity induced by Pseudomonas syringae pv. tomato DC3000. Desclos-Theveniau M; Arnaud D; Huang TY; Lin GJ; Chen WY; Lin YC; Zimmerli L PLoS Pathog; 2012 Feb; 8(2):e1002513. PubMed ID: 22346749 [TBL] [Abstract][Full Text] [Related]
20. Rhizosphere-associated Pseudomonas induce systemic resistance to herbivores at the cost of susceptibility to bacterial pathogens. Haney CH; Wiesmann CL; Shapiro LR; Melnyk RA; O'Sullivan LR; Khorasani S; Xiao L; Han J; Bush J; Carrillo J; Pierce NE; Ausubel FM Mol Ecol; 2018 Apr; 27(8):1833-1847. PubMed ID: 29087012 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]