BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 28295838)

  • 1. Chasing ghosts: allopolyploid origin of Oxyria sinensis (Polygonaceae) from its only diploid congener and an unknown ancestor.
    Luo X; Hu Q; Zhou P; Zhang D; Wang Q; Abbott RJ; Liu J
    Mol Ecol; 2017 Jun; 26(11):3037-3049. PubMed ID: 28295838
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The speciation and adaptation of the polyploids: a case study of the Chinese Isoetes L. diploid-polyploid complex.
    Dai X; Li X; Huang Y; Liu X
    BMC Evol Biol; 2020 Sep; 20(1):118. PubMed ID: 32928096
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Refugial isolation and range expansions drive the genetic structure of Oxyria sinensis (Polygonaceae) in the Himalaya-Hengduan Mountains.
    Meng L; Chen G; Li Z; Yang Y; Wang Z; Wang L
    Sci Rep; 2015 May; 5():10396. PubMed ID: 26013161
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hybridization and polyploidization within the Chenopodium album aggregate analysed by means of cytological and molecular markers.
    Mandák B; Krak K; Vít P; Lomonosova MN; Belyayev A; Habibi F; Wang L; Douda J; Štorchová H
    Mol Phylogenet Evol; 2018 Dec; 129():189-201. PubMed ID: 30172008
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Complete chloroplast genome sequence determination of Rheum species and comparative chloroplast genomics for the members of Rumiceae.
    Zhou T; Zhu H; Wang J; Xu Y; Xu F; Wang X
    Plant Cell Rep; 2020 Jun; 39(6):811-824. PubMed ID: 32221666
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A bicontinental origin of polyploid Australian/New Zealand Lepidium species (Brassicaceae)? Evidence from genomic in situ hybridization.
    Dierschke T; Mandáková T; Lysak MA; Mummenhoff K
    Ann Bot; 2009 Sep; 104(4):681-8. PubMed ID: 19589857
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genomic in situ hybridization identifies genome donors of Camellia reticulata (Theaceae).
    Liu LQ; Gu ZJ
    Plant Sci; 2011 Mar; 180(3):554-9. PubMed ID: 21421404
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dating the origins of polyploidy events.
    Doyle JJ; Egan AN
    New Phytol; 2010 Apr; 186(1):73-85. PubMed ID: 20028472
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sox genes evolution in closely related young tetraploid cyprinid fishes and their diploid relative.
    Guo B; Tong C; He S
    Gene; 2009 Jun; 439(1-2):102-12. PubMed ID: 19268695
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Plant adaptive radiation mediated by polyploid plasticity in transcriptomes.
    Shimizu-Inatsugi R; Terada A; Hirose K; Kudoh H; Sese J; Shimizu KK
    Mol Ecol; 2017 Jan; 26(1):193-207. PubMed ID: 27352992
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evolutionary history and genetic diversity of apomictic allopolyploids in Hieracium s.str.: morphological versus genomic features.
    Chrtek J; Mráz P; Belyayev A; Paštová L; Mrázová V; Caklová P; Josefiová J; Zagorski D; Hartmann M; Jandová M; Pinc J; Fehrer J
    Am J Bot; 2020 Jan; 107(1):66-90. PubMed ID: 31903548
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The impact of Pleistocene climate change on an ancient arctic-alpine plant: multiple lineages of disparate history in Oxyria digyna.
    Allen GA; Marr KL; McCormick LJ; Hebda RJ
    Ecol Evol; 2012 Mar; 2(3):649-65. PubMed ID: 22822441
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Radiation of the Nod-independent Aeschynomene relies on multiple allopolyploid speciation events.
    Arrighi JF; Chaintreuil C; Cartieaux F; Cardi C; Rodier-Goud M; Brown SC; Boursot M; D'Hont A; Dreyfus B; Giraud E
    New Phytol; 2014 Mar; 201(4):1457-1468. PubMed ID: 24237245
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular and cytogenetic evidence for an allotetraploid origin of Chenopodium quinoa and C. berlandieri (Amaranthaceae).
    Kolano B; McCann J; Orzechowska M; Siwinska D; Temsch E; Weiss-Schneeweiss H
    Mol Phylogenet Evol; 2016 Jul; 100():109-123. PubMed ID: 27063253
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Eco-genetic additivity of diploids in allopolyploid wild wheats.
    Huynh S; Broennimann O; Guisan A; Felber F; Parisod C
    Ecol Lett; 2020 Apr; 23(4):663-673. PubMed ID: 32012420
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Allopolyploid speciation of the Mexican tetraploid potato species Solanum stoloniferum and S. hjertingii revealed by genomic in situ hybridization.
    Pendinen G; Gavrilenko T; Jiang J; Spooner DM
    Genome; 2008 Sep; 51(9):714-20. PubMed ID: 18772949
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Arctic plant origins and early formation of circumarctic distributions: a case study of the mountain sorrel, Oxyria digyna.
    Wang Q; Liu J; Allen GA; Ma Y; Yue W; Marr KL; Abbott RJ
    New Phytol; 2016 Jan; 209(1):343-53. PubMed ID: 26197783
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Factors promoting polyploid persistence and diversification and limiting diploid speciation during the K-Pg interlude.
    Levin DA; Soltis DE
    Curr Opin Plant Biol; 2018 Apr; 42():1-7. PubMed ID: 29107221
    [TBL] [Abstract][Full Text] [Related]  

  • 19. On the Origin of Tetraploid Vernal Grasses (
    Chumová Z; Mandáková T; Trávníček P
    Genes (Basel); 2021 Jun; 12(7):. PubMed ID: 34202779
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Genomic in situ hybridization (GISH) discriminates between the A and the B genomes in diploid and tetraploid Setaria species.
    Benabdelmouna A; Shi Y; Abirached-Darmency M; Darmency H
    Genome; 2001 Aug; 44(4):685-90. PubMed ID: 11550905
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.