BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 28295888)

  • 1. Regimes of Biomolecular Ultrasmall Nanoparticle Interactions.
    Boselli L; Polo E; Castagnola V; Dawson KA
    Angew Chem Int Ed Engl; 2017 Apr; 56(15):4215-4218. PubMed ID: 28295888
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A model beyond protein corona: thermodynamics and binding stoichiometries of the interactions between ultrasmall gold nanoclusters and proteins.
    Yin MM; Chen WQ; Lu YQ; Han JY; Liu Y; Jiang FL
    Nanoscale; 2020 Feb; 12(7):4573-4585. PubMed ID: 32043104
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Anionic Ultrasmall Gold Nanoparticles Bind to Coagulation Factors and Disturb Normal Hemostatic Balance.
    Lira AL; Mina N; Bonturi CR; Nogueira RS; Torquato RJS; Oliva MLV; Sousa AA
    Chem Res Toxicol; 2022 Sep; 35(9):1558-1569. PubMed ID: 36018252
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tailoring Renal Clearance and Tumor Targeting of Ultrasmall Metal Nanoparticles with Particle Density.
    Tang S; Peng C; Xu J; Du B; Wang Q; Vinluan RD; Yu M; Kim MJ; Zheng J
    Angew Chem Int Ed Engl; 2016 Dec; 55(52):16039-16043. PubMed ID: 27882633
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The gold standard: gold nanoparticle libraries to understand the nano-bio interface.
    Alkilany AM; Lohse SE; Murphy CJ
    Acc Chem Res; 2013 Mar; 46(3):650-61. PubMed ID: 22732239
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mapping of Molecular Structure of the Nanoscale Surface in Bionanoparticles.
    Herda LM; Hristov DR; Lo Giudice MC; Polo E; Dawson KA
    J Am Chem Soc; 2017 Jan; 139(1):111-114. PubMed ID: 28005336
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The feasibility of NaGdF
    Zhang W; Zhang S; Gao P; Lan B; Li L; Zhang X; Li L; Lu H
    Med Phys; 2020 Feb; 47(2):662-671. PubMed ID: 31742714
    [TBL] [Abstract][Full Text] [Related]  

  • 8. How Entanglement of Different Physicochemical Properties Complicates the Prediction of in Vitro and in Vivo Interactions of Gold Nanoparticles.
    Xu M; Soliman MG; Sun X; Pelaz B; Feliu N; Parak WJ; Liu S
    ACS Nano; 2018 Oct; 12(10):10104-10113. PubMed ID: 30212621
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biointeractions of ultrasmall glutathione-coated gold nanoparticles: effect of small size variations.
    Sousa AA; Hassan SA; Knittel LL; Balbo A; Aronova MA; Brown PH; Schuck P; Leapman RD
    Nanoscale; 2016 Mar; 8(12):6577-88. PubMed ID: 26934984
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Size dependence of gold nanoparticle interactions with a supported lipid bilayer: A QCM-D study.
    Bailey CM; Kamaloo E; Waterman KL; Wang KF; Nagarajan R; Camesano TA
    Biophys Chem; 2015; 203-204():51-61. PubMed ID: 26042544
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ultrasmall-in-Nano Approach: Enabling the Translation of Metal Nanomaterials to Clinics.
    Cassano D; Pocoví-Martínez S; Voliani V
    Bioconjug Chem; 2018 Jan; 29(1):4-16. PubMed ID: 29186662
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Targeting the Surface of the Protein 14-3-3 by Ultrasmall (1.5 nm) Gold Nanoparticles Carrying the Specific Peptide CRaf.
    Ruks T; Loza K; Heggen M; Ottmann C; Bayer P; Beuck C; Epple M
    Chembiochem; 2021 Apr; 22(8):1456-1463. PubMed ID: 33275809
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biomolecular interactions of ultrasmall metallic nanoparticles and nanoclusters.
    Sousa AA; Schuck P; Hassan SA
    Nanoscale Adv; 2021 Apr; 3(11):2995-3027. PubMed ID: 34124577
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Regulation of Cell Uptake and Cytotoxicity by Nanoparticle Core under the Controlled Shape, Size, and Surface Chemistries.
    Bai X; Wang S; Yan X; Zhou H; Zhan J; Liu S; Sharma VK; Jiang G; Zhu H; Yan B
    ACS Nano; 2020 Jan; 14(1):289-302. PubMed ID: 31869202
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structural transitions in nanoparticle assemblies governed by competing nanoscale forces.
    Choueiri RM; Klinkova A; Thérien-Aubin H; Rubinstein M; Kumacheva E
    J Am Chem Soc; 2013 Jul; 135(28):10262-5. PubMed ID: 23806016
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Highly stable positively charged dendron-encapsulated gold nanoparticles.
    Cho TJ; MacCuspie RI; Gigault J; Gorham JM; Elliott JT; Hackley VA
    Langmuir; 2014 Apr; 30(13):3883-93. PubMed ID: 24625049
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Why and How of Ultrasmall Nanoparticles.
    Epple M; Rotello VM; Dawson K
    Acc Chem Res; 2023 Dec; 56(23):3369-3378. PubMed ID: 37966025
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nanoparticle size and surface chemistry determine serum protein adsorption and macrophage uptake.
    Walkey CD; Olsen JB; Guo H; Emili A; Chan WC
    J Am Chem Soc; 2012 Feb; 134(4):2139-47. PubMed ID: 22191645
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Design, synthesis, and characterization of mesogenic amine-capped nematic gold nanoparticles with surface-enhanced plasmonic resonances.
    Yu CH; Schubert CP; Welch C; Tang BJ; Tamba MG; Mehl GH
    J Am Chem Soc; 2012 Mar; 134(11):5076-9. PubMed ID: 22390286
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Imaging Nano-Bio Interactions in the Kidney: Toward a Better Understanding of Nanoparticle Clearance.
    Wang J; Liu G
    Angew Chem Int Ed Engl; 2018 Mar; 57(12):3008-3010. PubMed ID: 29450950
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.