These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
70 related articles for article (PubMed ID: 2829591)
1. Agonist-stimulation of cerebral phosphoinositide turnover following long-term treatment with antidepressants. Butler PD; Barkai AI Adv Exp Med Biol; 1987; 221():531-47. PubMed ID: 2829591 [TBL] [Abstract][Full Text] [Related]
2. 5-Hydroxytryptamine-stimulated inositol phospholipid hydrolysis in the mouse cortex has pharmacological characteristics compatible with mediation via 5-HT2 receptors but this response does not reflect altered 5-HT2 function after 5,7-dihydroxytryptamine lesioning or repeated antidepressant treatments. Godfrey PP; McClue SJ; Young MM; Heal DJ J Neurochem; 1988 Mar; 50(3):730-8. PubMed ID: 2828545 [TBL] [Abstract][Full Text] [Related]
3. 5-Hydroxytryptamine-stimulated inositol phospholipid hydrolysis in rat cerebral cortex slices: pharmacological characterization and effects of antidepressants. Kendall DA; Nahorski SR J Pharmacol Exp Ther; 1985 May; 233(2):473-9. PubMed ID: 2987487 [TBL] [Abstract][Full Text] [Related]
4. The influences of reserpine and imipramine on the 5-HT2 receptor binding site and its coupled second messenger in rat cerebral cortex. Lee MJ; Wei JW Chin J Physiol; 2013 Aug; 56(4):199-208. PubMed ID: 23806035 [TBL] [Abstract][Full Text] [Related]
5. In vivo determination of 5-hydroxytryptamine receptor-stimulated phosphoinositide turnover in rat brain. Hide I; Kato T; Yamawaki S J Neurochem; 1989 Aug; 53(2):556-60. PubMed ID: 2545822 [TBL] [Abstract][Full Text] [Related]
6. Species dependence of adaptations at the pre- and postsynaptic serotonergic receptors following long-term antidepressant drug treatment. Schoups AA; De Potter WP Biochem Pharmacol; 1988 Dec; 37(23):4451-60. PubMed ID: 2849445 [TBL] [Abstract][Full Text] [Related]
7. Aluminum decreases muscarinic, adrenergic, and metabotropic receptor-stimulated phosphoinositide hydrolysis in hippocampal and cortical slices from rat brain. Shafer TJ; Mundy WR; Tilson HA Brain Res; 1993 Nov; 629(1):133-40. PubMed ID: 8287268 [TBL] [Abstract][Full Text] [Related]
8. Effect of prenatal exposure to antidepressants on 5-HT-stimulated phosphoinositide hydrolysis and 5-HT2 receptors in rat brain. Romero G; Toscano E; Del Río J Gen Pharmacol; 1994 Sep; 25(5):851-6. PubMed ID: 7835628 [TBL] [Abstract][Full Text] [Related]
9. Tandem regulation of phosphoinositide signaling and acute behavioral effects induced by antidepressant agents in rats. Tyeryar KR; Undie AS Psychopharmacology (Berl); 2007 Aug; 193(2):271-82. PubMed ID: 17435992 [TBL] [Abstract][Full Text] [Related]
10. Temporal sequence of changes in central noradrenergic system of rat after prolonged antidepressant treatment: receptor desensitization and neurotransmitter interactions. Racagni G; Mocchetti I; Calderini G; Battistella A; Brunello N Neuropharmacology; 1983 Mar; 22(3 Spec No):415-24. PubMed ID: 6304559 [TBL] [Abstract][Full Text] [Related]
11. Pharmacological characterization of serotonin-stimulated phosphoinositide turnover in brain regions of the immature rat. Claustre Y; Rouquier L; Scatton B J Pharmacol Exp Ther; 1988 Mar; 244(3):1051-6. PubMed ID: 2855237 [TBL] [Abstract][Full Text] [Related]
12. Effect of electroconvulsive shock on 5-HT2 and alpha 1-adrenoceptors and phosphoinositide signalling system in rat brain. Pandey GN; Pandey SC; Isaac L; Davis JM Eur J Pharmacol; 1992 Aug; 226(4):303-10. PubMed ID: 1327845 [TBL] [Abstract][Full Text] [Related]
13. Effect of subchronic antidepressants administration on serotonin-stimulated phosphoinositide hydrolysis in para-chlorophenylalanine-treated rat hippocampal slices. Kusumi I; Mikuni M; Takahashi K Prog Neuropsychopharmacol Biol Psychiatry; 1991; 15(3):393-403. PubMed ID: 1713698 [TBL] [Abstract][Full Text] [Related]
14. Carbachol- and norepinephrine-stimulated phosphoinositide metabolism in rat brain: effect of chronic cholinesterase inhibition. Costa LG; Kaylor G; Murphy SD J Pharmacol Exp Ther; 1986 Oct; 239(1):32-7. PubMed ID: 3020234 [TBL] [Abstract][Full Text] [Related]
15. On the involvement of multiple muscarinic receptor subtypes in the activation of phosphoinositide metabolism in rat cerebral cortex. Forray C; el-Fakahany EE Mol Pharmacol; 1990 Jun; 37(6):893-902. PubMed ID: 2163015 [TBL] [Abstract][Full Text] [Related]
16. Long-term atropine treatment lowers the efficacy of carbachol to stimulate phosphatidylinositol breakdown in the cerebral cortex and hippocampus of rats. Goobar L; Bartfai T Biochem J; 1988 Mar; 250(3):727-34. PubMed ID: 3390140 [TBL] [Abstract][Full Text] [Related]
17. Imipramine and tetrabenazine: effects on monoamine receptor binding sites and phosphoinositide hydrolysis. Butler PD; Edwards E; Barkai AI Eur J Pharmacol; 1989 Jan; 160(1):93-100. PubMed ID: 2540994 [TBL] [Abstract][Full Text] [Related]
18. Effects of antidepressant drugs on inositol phospholipid hydrolysis in rat cerebral cortical slices. Dyck LE; Boulton AA Neurochem Res; 1989 Nov; 14(11):1047-52. PubMed ID: 2594139 [TBL] [Abstract][Full Text] [Related]
19. Modulation of second messenger function in rat brain by in vivo alteration of receptor sensitivity: relevance to the mechanism of action of electroconvulsive therapy and antidepressants. Newman ME; Lerer B Prog Neuropsychopharmacol Biol Psychiatry; 1989; 13(1-2):1-30. PubMed ID: 2546177 [TBL] [Abstract][Full Text] [Related]
20. Stimulatory effects of the putative metabotropic glutamate receptor antagonist L-AP3 on phosphoinositide turnover in neonatal rat cerebral cortex. Mistry R; Prabhu G; Godwin M; Challiss RA Br J Pharmacol; 1996 Mar; 117(6):1309-17. PubMed ID: 8882630 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]