These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 28295928)

  • 21. Comparison of bulk and microfluidic methods to monitor the phase behaviour of nanoparticles during digestion of lipid-based drug formulations using in situ X-ray scattering.
    Hong L; Sesen M; Hawley A; Neild A; Spicer PT; Boyd BJ
    Soft Matter; 2019 Nov; 15(46):9565-9578. PubMed ID: 31724682
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Scanning microbeam small-angle X-ray diffraction study of interfacial heterogeneous crystallization of fat crystals in oil-in-water emulsion droplets.
    Arima S; Ueno S; Ogawa A; Sato K
    Langmuir; 2009 Sep; 25(17):9777-84. PubMed ID: 19588887
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Structural development of self nano emulsifying drug delivery systems (SNEDDS) during in vitro lipid digestion monitored by small-angle X-ray scattering.
    Fatouros DG; Deen GR; Arleth L; Bergenstahl B; Nielsen FS; Pedersen JS; Mullertz A
    Pharm Res; 2007 Oct; 24(10):1844-53. PubMed ID: 17458683
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Microemulsions as reaction media for the synthesis of Pt nanoparticles.
    Magno LM; Angelescu DG; Sigle W; Stubenrauch C
    Phys Chem Chem Phys; 2011 Feb; 13(8):3048-58. PubMed ID: 20882245
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Deformation and breakup of micro- and nanoparticle stabilized droplets in microfluidic extensional flows.
    Mulligan MK; Rothstein JP
    Langmuir; 2011 Aug; 27(16):9760-8. PubMed ID: 21732665
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A small-angle X-ray scattering study of red blood cells in continuous flow.
    Burchert JP; Graceffa R; Saldanha O; Burghammer M; Köster S
    J Synchrotron Radiat; 2023 May; 30(Pt 3):582-590. PubMed ID: 37026391
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Microfluidic Shrinking Droplet Concentrator for Analyte Detection and Phase Separation of Protein Solutions.
    Kopp MRG; Linsenmeier M; Hettich B; Prantl S; Stavrakis S; Leroux JC; Arosio P
    Anal Chem; 2020 Apr; 92(8):5803-5812. PubMed ID: 32249573
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Droplet microfluidics for high-throughput analysis of cells and particles.
    Zagnoni M; Cooper JM
    Methods Cell Biol; 2011; 102():25-48. PubMed ID: 21704834
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Novel in situ setup to study the formation of nanoparticles in the gas phase by small angle x-ray scattering.
    Shyjumon I; Rappolt M; Sartori B; Amenitsch H; Laggner P
    Rev Sci Instrum; 2008 Apr; 79(4):043905. PubMed ID: 18447533
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Formation of droplets and bubbles in a microfluidic T-junction-scaling and mechanism of break-up.
    Garstecki P; Fuerstman MJ; Stone HA; Whitesides GM
    Lab Chip; 2006 Mar; 6(3):437-46. PubMed ID: 16511628
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Pickering Emulsion Gels Prepared by Hydrogen-Bonded Zein/Tannic Acid Complex Colloidal Particles.
    Zou Y; Guo J; Yin SW; Wang JM; Yang XQ
    J Agric Food Chem; 2015 Aug; 63(33):7405-14. PubMed ID: 26226053
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Surface-enhanced Raman scattering in nanoliter droplets: towards high-sensitivity detection of mercury (II) ions.
    Wang G; Lim C; Chen L; Chon H; Choo J; Hong J; deMello AJ
    Anal Bioanal Chem; 2009 Aug; 394(7):1827-32. PubMed ID: 19444432
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effects of sugars on the formation of nanometer-sized droplets of vegetable oil by an isothermal low-energy emulsification method.
    Ikeda S; Miyanoshita M; Gohtani S
    J Food Sci; 2013 Jul; 78(7):E1017-21. PubMed ID: 23701718
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Structural analysis of intrinsically disordered proteins by small-angle X-ray scattering.
    Bernadó P; Svergun DI
    Mol Biosyst; 2012 Jan; 8(1):151-67. PubMed ID: 21947276
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Highly productive droplet formation by anisotropic elongation of a thread flow in a microchannel.
    Saeki D; Sugiura S; Kanamori T; Sato S; Mukataka S; Ichikawa S
    Langmuir; 2008 Dec; 24(23):13809-13. PubMed ID: 18986185
    [TBL] [Abstract][Full Text] [Related]  

  • 36. K-Channel: A Multifunctional Architecture for Dynamically Reconfigurable Sample Processing in Droplet Microfluidics.
    Doonan SR; Bailey RC
    Anal Chem; 2017 Apr; 89(7):4091-4099. PubMed ID: 28222260
    [TBL] [Abstract][Full Text] [Related]  

  • 37. An X-ray transparent microfluidic platform for screening of the phase behavior of lipidic mesophases.
    Khvostichenko DS; Kondrashkina E; Perry SL; Pawate AS; Brister K; Kenis PJ
    Analyst; 2013 Sep; 138(18):5384-95. PubMed ID: 23882463
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Formation of monodisperse hierarchical lipid particles utilizing microfluidic droplets in a nonequilibrium state.
    Mizuno M; Toyota T; Konishi M; Kageyama Y; Yamada M; Seki M
    Langmuir; 2015 Mar; 31(8):2334-41. PubMed ID: 25669326
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Microfluidic emulsion separation-simultaneous separation and sensing by multilayer nanofilm structures.
    Uhlmann P; Varnik F; Truman P; Zikos G; Moulin JF; Müller-Buschbaum P; Stamm M
    J Phys Condens Matter; 2011 May; 23(18):184123. PubMed ID: 21508469
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Surface-Enhanced Raman Scattering Based Microfluidics for Single-Cell Analysis.
    Willner MR; McMillan KS; Graham D; Vikesland PJ; Zagnoni M
    Anal Chem; 2018 Oct; 90(20):12004-12010. PubMed ID: 30230817
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.