These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 28295953)

  • 1. Three-dimensional carbon nanotube scaffolds for long-term maintenance and expansion of human mesenchymal stem cells.
    Lalwani G; D'agati M; Gopalan A; Patel SC; Talukdar Y; Sitharaman B
    J Biomed Mater Res A; 2017 Jul; 105(7):1927-1939. PubMed ID: 28295953
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Three-dimensional macroporous graphene scaffolds for tissue engineering.
    Lalwani G; D'agati M; Gopalan A; Rao M; Schneller J; Sitharaman B
    J Biomed Mater Res A; 2017 Jan; 105(1):73-83. PubMed ID: 27529473
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Functionalized carbon nanotubes as suitable scaffold materials for proliferation and differentiation of canine mesenchymal stem cells.
    Das K; Madhusoodan AP; Mili B; Kumar A; Saxena AC; Kumar K; Sarkar M; Singh P; Srivastava S; Bag S
    Int J Nanomedicine; 2017; 12():3235-3252. PubMed ID: 28458543
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhanced human bone marrow mesenchymal stem cell functions in novel 3D cartilage scaffolds with hydrogen treated multi-walled carbon nanotubes.
    Holmes B; Castro NJ; Li J; Keidar M; Zhang LG
    Nanotechnology; 2013 Sep; 24(36):365102. PubMed ID: 23959974
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Porous three-dimensional carbon nanotube scaffolds for tissue engineering.
    Lalwani G; Gopalan A; D'Agati M; Sankaran JS; Judex S; Qin YX; Sitharaman B
    J Biomed Mater Res A; 2015 Oct; 103(10):3212-25. PubMed ID: 25788440
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Three-dimensional co-culture of mesenchymal stromal cells and differentiated osteoblasts on human bio-derived bone scaffolds supports active multi-lineage hematopoiesis in vitro: Functional implication of the biomimetic HSC niche.
    Huang X; Zhu B; Wang X; Xiao R; Wang C
    Int J Mol Med; 2016 Oct; 38(4):1141-51. PubMed ID: 27571775
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Stiffness-controlled three-dimensional collagen scaffolds for differentiation of human Wharton's jelly mesenchymal stem cells into cardiac progenitor cells.
    Lin YL; Chen CP; Lo CM; Wang HS
    J Biomed Mater Res A; 2016 Sep; 104(9):2234-42. PubMed ID: 27120780
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Random networks of single-walled carbon nanotubes promote mesenchymal stem cell's proliferation and differentiation.
    Lee JH; Shim W; Choolakadavil Khalid N; Kang WS; Lee M; Kim HS; Choi J; Lee G; Kim JH
    ACS Appl Mater Interfaces; 2015 Jan; 7(3):1560-7. PubMed ID: 25546303
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Osteochondral repair using porous poly(lactide-co-glycolide)/nano-hydroxyapatite hybrid scaffolds with undifferentiated mesenchymal stem cells in a rat model.
    Xue D; Zheng Q; Zong C; Li Q; Li H; Qian S; Zhang B; Yu L; Pan Z
    J Biomed Mater Res A; 2010 Jul; 94(1):259-70. PubMed ID: 20166224
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Incorporation of carboxylation multiwalled carbon nanotubes into biodegradable poly(lactic-co-glycolic acid) for bone tissue engineering.
    Lin C; Wang Y; Lai Y; Yang W; Jiao F; Zhang H; Ye S; Zhang Q
    Colloids Surf B Biointerfaces; 2011 Apr; 83(2):367-75. PubMed ID: 21208787
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of multiwalled carbon nanotubes on electrospun poly(lactide-co-glycolide)-based nanocomposite scaffolds on neural cells proliferation.
    Lv ZJ; Liu Y; Miao H; Leng ZQ; Guo JH; Liu J
    J Biomed Mater Res B Appl Biomater; 2017 Jul; 105(5):934-943. PubMed ID: 26849161
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Carbon nanotube-collagen three-dimensional culture of mesenchymal stem cells promotes expression of neural phenotypes and secretion of neurotrophic factors.
    Lee JH; Lee JY; Yang SH; Lee EJ; Kim HW
    Acta Biomater; 2014 Oct; 10(10):4425-36. PubMed ID: 24954912
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Human intraoral harvested mesenchymal stem cells: characterization, multilineage differentiation analysis, and 3-dimensional migration of natural bone mineral and tricalcium phosphate scaffolds.
    Lohberger B; Payer M; Rinner B; Bartmann C; Stadelmeyer E; Traunwieser E; DeVaney T; Jakse N; Leithner A; Windhager R
    J Oral Maxillofac Surg; 2012 Oct; 70(10):2309-15. PubMed ID: 21940092
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of doping in carbon nanotubes on the viability of biomimetic chitosan-carbon nanotubes-hydroxyapatite scaffolds.
    Fonseca-García A; Mota-Morales JD; Quintero-Ortega IA; García-Carvajal ZY; Martínez-López V; Ruvalcaba E; Landa-Solís C; Solis L; Ibarra C; Gutiérrez MC; Terrones M; Sanchez IC; del Monte F; Velasquillo MC; Luna-Bárcenas G
    J Biomed Mater Res A; 2014 Oct; 102(10):3341-51. PubMed ID: 23894015
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Adipose-derived mesenchymal stromal (stem) cells differentiate to osteoblast and chondroblast lineages upon incubation with conditioned media from dental pulp stem cell-derived osteoblasts and auricle cartilage chondrocytes.
    Carbone A; Valente M; Annacontini L; Castellani S; Di Gioia S; Parisi D; Rucci M; Belgiovine G; Colombo C; Di Benedetto A; Mori G; Lo Muzio L; Maiorella A; Portincasa A; Conese M
    J Biol Regul Homeost Agents; 2016; 30(1):111-22. PubMed ID: 27049081
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chitosan-agarose scaffolds supports chondrogenesis of Human Wharton's Jelly mesenchymal stem cells.
    Merlin Rajesh Lal LP; Suraishkumar GK; Nair PD
    J Biomed Mater Res A; 2017 Jul; 105(7):1845-1855. PubMed ID: 28256803
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bone marrow mesenchymal stem cell aspirates from alternative sources: is the knee as good as the iliac crest?
    Narbona-Carceles J; Vaquero J; Suárez-Sancho S; Forriol F; Fernández-Santos ME
    Injury; 2014 Oct; 45 Suppl 4():S42-7. PubMed ID: 25384474
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Superior performance of co-cultured mesenchymal stem cells and hepatocytes in poly(lactic acid-glycolic acid) scaffolds for the treatment of acute liver failure.
    Liu M; Yang J; Hu W; Zhang S; Wang Y
    Biomed Mater; 2016 Feb; 11(1):015008. PubMed ID: 26836957
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sequential culture on biomimetic nanoclay scaffolds forms three-dimensional tumoroids.
    Katti KS; Molla MS; Karandish F; Haldar MK; Mallik S; Katti DR
    J Biomed Mater Res A; 2016 Jul; 104(7):1591-602. PubMed ID: 26873510
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of demineralized bone particle/poly(lactic-co-glycolic acid) scaffolds on the attachment and proliferation of mesenchymal stem cells.
    Han KS; Song JE; Kang SJ; Lee D; Khang G
    J Biomater Sci Polym Ed; 2015; 26(2):92-110. PubMed ID: 25431827
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.