These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

214 related articles for article (PubMed ID: 28296022)

  • 1. Large but uneven reduction in fish size across species in relation to changing sea temperatures.
    van Rijn I; Buba Y; DeLong J; Kiflawi M; Belmaker J
    Glob Chang Biol; 2017 Sep; 23(9):3667-3674. PubMed ID: 28296022
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Warming temperatures and smaller body sizes: synchronous changes in growth of North Sea fishes.
    Baudron AR; Needle CL; Rijnsdorp AD; Marshall CT
    Glob Chang Biol; 2014 Apr; 20(4):1023-31. PubMed ID: 24375891
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Thermal affinity as the dominant factor changing Mediterranean fish abundances.
    Givan O; Edelist D; Sonin O; Belmaker J
    Glob Chang Biol; 2018 Jan; 24(1):e80-e89. PubMed ID: 28727210
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Climate change effects on fishes and fisheries: towards a cause-and-effect understanding.
    Pörtner HO; Peck MA
    J Fish Biol; 2010 Nov; 77(8):1745-79. PubMed ID: 21078088
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Temperature impacts on fish physiology and resource abundance lead to faster growth but smaller fish sizes and yields under warming.
    Lindmark M; Audzijonyte A; Blanchard JL; Gårdmark A
    Glob Chang Biol; 2022 Nov; 28(21):6239-6253. PubMed ID: 35822557
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Climate change exacerbates interspecific interactions in sympatric coastal fishes.
    Milazzo M; Mirto S; Domenici P; Gristina M
    J Anim Ecol; 2013 Mar; 82(2):468-77. PubMed ID: 23039273
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modelling the effects of climate change on the distribution and production of marine fishes: accounting for trophic interactions in a dynamic bioclimate envelope model.
    Fernandes JA; Cheung WW; Jennings S; Butenschön M; de Mora L; Frölicher TL; Barange M; Grant A
    Glob Chang Biol; 2013 Aug; 19(8):2596-607. PubMed ID: 23625663
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Impacts of rising sea temperature on krill increase risks for predators in the Scotia Sea.
    Klein ES; Hill SL; Hinke JT; Phillips T; Watters GM
    PLoS One; 2018; 13(1):e0191011. PubMed ID: 29385153
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Warming shelf seas drive the subtropicalization of European pelagic fish communities.
    Montero-Serra I; Edwards M; Genner MJ
    Glob Chang Biol; 2015 Jan; 21(1):144-53. PubMed ID: 25230844
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fish body sizes change with temperature but not all species shrink with warming.
    Audzijonyte A; Richards SA; Stuart-Smith RD; Pecl G; Edgar GJ; Barrett NS; Payne N; Blanchard JL
    Nat Ecol Evol; 2020 Jun; 4(6):809-814. PubMed ID: 32251381
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biodiversity enhances reef fish biomass and resistance to climate change.
    Duffy JE; Lefcheck JS; Stuart-Smith RD; Navarrete SA; Edgar GJ
    Proc Natl Acad Sci U S A; 2016 May; 113(22):6230-5. PubMed ID: 27185921
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Climate change and distribution shifts in marine fishes.
    Perry AL; Low PJ; Ellis JR; Reynolds JD
    Science; 2005 Jun; 308(5730):1912-5. PubMed ID: 15890845
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Palaeontological evidence for community-level decrease in mesopelagic fish size during Pleistocene climate warming in the eastern Mediterranean.
    Agiadi K; Quillévéré F; Nawrot R; Sommeville T; Coll M; Koskeridou E; Fietzke J; Zuschin M
    Proc Biol Sci; 2023 Jan; 290(1990):20221994. PubMed ID: 36629116
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optimum growth temperature declines with body size within fish species.
    Lindmark M; Ohlberger J; Gårdmark A
    Glob Chang Biol; 2022 Apr; 28(7):2259-2271. PubMed ID: 35060649
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Climate change and body size shift in Mediterranean bivalve assemblages: unexpected role of biological invasions.
    Nawrot R; Albano PG; Chattopadhyay D; Zuschin M
    Proc Biol Sci; 2017 Aug; 284(1860):. PubMed ID: 28768884
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Future warmer seas: increased stress and susceptibility to grazing in seedlings of a marine habitat-forming species.
    Hernán G; Ortega MJ; Gándara AM; Castejón I; Terrados J; Tomas F
    Glob Chang Biol; 2017 Nov; 23(11):4530-4543. PubMed ID: 28544549
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chapter 2. Vulnerability of marine turtles to climate change.
    Poloczanska ES; Limpus CJ; Hays GC
    Adv Mar Biol; 2009; 56():151-211. PubMed ID: 19895975
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fishing constrains phenotypic responses of marine fish to climate variability.
    Morrongiello JR; Sweetman PC; Thresher RE
    J Anim Ecol; 2019 Nov; 88(11):1645-1656. PubMed ID: 31034605
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Impact of warming on aquatic body sizes explained by metabolic scaling from microbes to macrofauna.
    Deutsch C; Penn JL; Verberk WCEP; Inomura K; Endress MG; Payne JL
    Proc Natl Acad Sci U S A; 2022 Jul; 119(28):e2201345119. PubMed ID: 35787059
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Macroscale patterns in body size of intertidal crustaceans provide insights on climate change effects.
    Jaramillo E; Dugan JE; Hubbard DM; Contreras H; Duarte C; Acuña E; Schoeman DS
    PLoS One; 2017; 12(5):e0177116. PubMed ID: 28481897
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.